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Abstract—Despite decades of efforts, existing indoor location
systems do not easily scale with low cost while maintaining
high accuracy. We present EasiTrack, an indoor tracking system
that achieves decimeter accuracy using a single commodity WiFi
access point (AP) under non-line-of-sight (NLOS) conditions and
can deploy at scale with almost zero cost. EasiTrack makes two
key technical contributions. First, it incorporates RF-based iner-
tial measurement algorithms that can accurately infer a target’s
moving distance purely using the RF signals received by itself.
Second, EasiTrack devises a map-augmented tracking algorithm
that outputs fine-grained locations by jointly leveraging the dis-
tance estimates and an indoor map that is ubiquitously available
nowadays. We build a fully functional real-time system center-
ing around a satellite-like architecture, which enables EasiTrack
to support an unlimited number of clients. We have deployed
EasiTrack in seven different scenarios (including offices, hotels,
museums, and manufacturing facilities) to track both humans
and machines. The results reveal that EasiTrack achieves a
median 0.25 m and 90%tile 0.69-m accuracy in distance mea-
surement, a median 0.58 m and 90%tile 1.33-m location accuracy
for tracking objects, and a median 0.70 m and 90%tile 1.97-m
accuracy for tracking humans in both line-of-sight and NLOS
scenarios and supports a broad coverage of 50 m × 60 m using a
single AP. It is also verified that EasiTrack can be easily deployed
in massive buildings with little cost, promising a practical solution
for ubiquitous indoor tracking.

Index Terms—Indoor maps, indoor tracking, particle filter, RF-
based inertial measurement (RIM), wireless localization.

I. INTRODUCTION

INDOOR positioning systems (IPSs) using commodity
off-the-shelf (COTS) WiFi are among the most promising

solutions for ubiquitous tracking thanks to the wide availability
of already deployed WiFi infrastructure. They should ideally
satisfy the following four requirements.

1) Low (Zero) Cost: They should be easy to install and
deploy with low or ideally zero efforts. Ideally, they
should be able to locate a mobile device using a sin-
gle arbitrarily installed access point (AP) (even without
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knowing any of its information like location and orienta-
tion), without requiring any hardware changes at either
side.

2) Scalable: The systems should be scalable in twofold.
They should scale to a large number of different build-
ings and should support large populations of concurrent
mobile devices, just as GPS does, both with negligible
costs.

3) Large Coverage: The systems should cover a large area,
be it close or at a distance, having line-of-sight (LOS) or
behind multiple walls to the AP, with consistently high
accuracy.

4) Accurate: They should be able to provide sub-
meter accuracy, as demanded by many applica-
tions [45]. Such accuracy is needed to enable in-
building navigation, for example, directing a customer
to a product in the store or a robot to a work
station.

If the above requirements are all satisfied, we can imagine
an indoor location system that becomes a ubiquitous “indoor
GPS” that is made available anywhere having WiFi signals
and for any device with a commodity WiFi chip.

To the best of our knowledge, however, no existing
technology satisfies all these requirements. Recent tech-
niques based on angle of arrival (AoA) or time of
flight (ToF) [19], [41], [58] could yield submeter median
accuracy. However, they usually require large band-
width (for ToF) [41], [56] and many phased antennas (for
AoA) [57], [58] for good performance, both of which are lim-
ited on COTS WiFi. Moreover, they all require the precise
installation of multiple APs (to obtain their reference locations
and orientations). Fingerprint-based approaches are neither
accurate enough nor cost efficient due to expensive prior
training [7], [35], [39], [61]. Other technologies combin-
ing with inertial sensors are deployable but have limited
accuracy [17], [31], [33], [43], [49]. The latest released
802.11 mc [1] supports round-trip time measurements, but
does not offer submeter resolution either, and still needs
multiple APs for multilateration. Pedestrian dead-reckoning
(PDR) solutions [17], [22] are easy to deploy, yet face signifi-
cant drawbacks of accuracy. A recent work WiBall [65] takes
an important step toward the above goals by estimating moving
distances via WiFi signals. However, it only produces accu-
rate locations assuming detailed floorplan with the knowledge
of corridors, crossing, doors, etc., rendering it costly and not
scalable.
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Fig. 1. Overall architecture: EasiTrack passively collects CSI from one AP and records inertial sensors built in mobile clients. It first calculates the moving
distance from CSI by leveraging rich multipaths, and orientation from IMU. Then it fuses the two types of estimates to continuously track, in combination
with an indoor map. By this architecture, EasiTrack works like an “indoor GPS” (but without the need of multiple “satellites”) that supports large populations
of clients.

This article presents EasiTrack,1 an indoor tracking system
that meets all the four requirements above. EasiTrack achieves
submeter accuracy in both LOS and non-LOS (NLOS) scenar-
ios using a single arbitrarily installed AP, without knowing its
location. It can be easily deployed at scale, with no extra inputs
but a plain imagery floorplan of the area of interests, which
would be needed anyway for most location-based services
and is ubiquitously available. EasiTrack’s architecture cen-
ters around a satellite-like design, which supports massive
concurrent clients without affecting the channel capacity and
preserves privacy since a client never needs to announce its
presence but only passively listens to the AP.

As shown in Fig. 1, to track a client, EasiTrack first esti-
mates the moving distance from its measured channel state
information (CSI) and infers the moving direction from the
built-in inertial sensors. It then employs an effective map-
augmented tracking algorithm to incorporate distance and
orientation estimates, which outputs fine-grained locations.
Specifically, EasiTrack advances state-of-the-art tracking in
two distinct ways.

1) Distance Estimation by Leveraging Multipaths:
EasiTrack first contributes a super-resolution distance estima-
tion algorithm, which accurately estimates the incremental
displacement of a moving radio merely by the CSI measured
by itself. The idea is derived from the recently proposed
RF-based inertial measurement (RIM) [52], which estimates
multiple motion parameters, including moving distance, head-
ing direction, and rotating angle using RF signals. Original
RIM resolves all these parameters using more antennas than
what is available on commodity devices. In EasiTrack, we
employ RIM for only distance estimation, which requires a
minimum of two antennas. The unique insight of moving
distance estimation using RIM is that, as shown in Fig. 2,
when an array translates, two of its antennas may traverse
through the same locations in the space, one preceded by
the other with a particular time delay. Upon the moment the
latter antenna arrives at the same location as the former one,
the array will have traveled for exactly a distance equal to
the antenna separation. Noticing this, we determine the time
delays by using the multipath profiles at different locations as
virtual antennas. The moving speeds can then be calculated
by dividing the antenna separation by the time delays, and the

1Coined from Easy, accurate, and scalable indoor tracking.

Fig. 2. Illustration of virtual AA. When the array moves, after a displacement
of �d, antenna 1 will arrive at t2 at a location where antenna 2 was at
t0. Thus, the moving speed can be derived as �d/(t2 − t0). Similarly, the
instantaneous speeds can be estimated for every time point after that, and
becomes �d/(tk − tk−2) for the current moment tk . Note for ease of display,
antenna 2 is plotted upside down.

moving distance can accordingly be derived by integrating
speeds over time.

The algorithm is demonstrated to be highly accurate, yet
only suitable for relatively constrained movements, such as
shopping carts, robots, and automated guided vehicles (AGVs).
To enable EasiTrack for free human tracking as well, we fur-
ther incorporate the approach developed in [65] that infers
moving distances for unconstrained motions from CSI. Then
we design a universal architecture that allows switching the
two methods for different scenarios. By truly leveraging mul-
tipaths, instead of resolving and combating them like previous
works [19], [58], EasiTrack’s distance estimation is location
independent, working under both LOS and NLOS conditions.

2) Map-Augmented Probabilistic Tracking: While the dis-
tance estimation is accurate, it does not ensure submeter
tracking accuracy when integrated with orientations obtained
by inertial sensors, which suffer from significant accumula-
tive errors. EasiTrack employs indoor maps to cope with these
uncertainties. Imagine that Google Maps improves GPS accu-
racy using outdoor road maps to place a car on the correct
road. Similarly, indoor maps impose geometric constraints to
a target’s in-building movements. For example, a user does
not penetrate a wall. Existing works have exploited indoor
maps. However, some of them face accuracy limitations dic-
tated by smartphone dead-reckoning [22], [33], while others
like WiBall [65] apply rule-based enhancement, which relies
on detailed structure knowledge of a floorplan.

In EasiTrack, we design a novel map-augmented proba-
bilistic approach for accurate indoor tracking. Our algorithm
models an indoor map as a weighted graph and feeds it into
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a graph-based particle filter (GPF), which jointly handles dis-
tance and orientation errors and outputs accurate locations. The
graph-based model enables EasiTrack to use a small number
of particles (e.g., 50), thereby making it run in real time, even
on resource-limited devices. Also, the proposed GPF requires
merely information on accessible and inaccessible areas from
the map, which can be directly extracted from a plain floor-
plan image that is ubiquitously available. It does not need any
structured knowledge, such as corridors, crossings, doors, or
rooms, etc. Thus, EasiTrack can easily scale to many buildings
with little cost.

Summary of Results: We build a fully functional real-time
system of EasiTrack, consisting of hardware prototype using
commodity WiFi chipsets and software sets. To comprehen-
sively evaluate the accuracy and deployment simplicity, we
have deployed EasiTrack in seven different buildings to track
both humans and machines, including three office buildings,
one museum, one hotel, and two manufacturing facilities,
all with complex multipath environments. Few of previous
systems have been tested under such stressful and extensive
conditions. Our key results reveal the following.

1) EasiTrack achieves a median accuracy of 0.25 m and
90%tile accuracy of 0.69 m in moving distance estima-
tion by using RIM with a single COTS WiFi chipset.

2) EasiTrack achieves a median 0.58 m and 90%tile 1.33 m
location error for tracking objects, and a median 0.70 m
and 90%tile 1.97 m error for tracking humans, in both
LOS and NLOS conditions with a single AP.

3) It is almost zero cost to deploy EasiTrack in a new build-
ing. Provided the map, the AP can be set up in minutes
at any location that gives coverage.

4) EasiTrack can track in a large area similar to the AP’s
signal coverage. In our deployment, it can track over a
50 m × 60 m area with one AP.

Additionally, the results also confirm the robustness and
scalability of EasiTrack, outperforming the state-of-the-art
approaches [65].

Contributions: The core contribution of this article is
EasiTrack, a ubiquitous indoor tracking system that achieves
submeter accuracy in both LOS and NLOS scenarios using a
single unknown AP and scales to massive buildings and end
clients with (almost) zero costs. Despite over three decades
of research, enabling such capabilities in one IPS system has
been regarded as challenging, and we are unaware of any
prior works by which the same would have been achieved.
EasiTrack also contributes a CSI-based moving distance esti-
mation algorithm and a map-augmented tracking algorithm,
each of which could separately complement existing tech-
niques. It also offers a streamlined reference framework for
scalable IPS design and implementation. With this, we believe
EasiTrack sets the stage for a ubiquitous IPS solution for
world-wide deployment.

II. OVERVIEW

Fig. 1 depicts an overview of EasiTrack’s architecture. The
left part illustrates the satellite-like protocol of EasiTrack. In
an example usage scenario, a client, which could be a mobile,

wearable, robot, AGV, or any other electronic equipped with a
WiFi radio and inertial sensors (IMU), passively listens to an
AP and measures CSI from the incoming packets. The client
also reads its built-in inertial sensors. EasiTrack’s core engine,
running on the client, infers the moving distance and orien-
tation from the measurements and incorporates them together
to track the client’s continuous locations. The AP is simple:
it does nothing but periodically sending signals that could
be detected by the clients. Such simple-core, complex-edge
architecture design provides significant benefits.

1) Scalable: It allows concurrent positioning of a large
population of clients, without affecting the channel
capacity.

2) Privacy: It preserves user privacy because the client
does not need to send out any signal which may expose
its presence, thereby preventing others from sniffing its
location.

3) Flexible: The clients could perform different tracking
algorithms as needed, all under the same environments.

The right part of Fig. 1 shows EasiTrack’s workflow on a
mobile client. There are two key modules.

1) Distance Estimation: EasiTrack involves two distinct
approaches, namely, antenna alignment (AA) [52] and
focusing ball (FB) [65], to estimate the moving distance
traversed by the user. Both approaches leverage the rich
multipaths to estimate moving distances, yet are applica-
ble in different tracking scenarios: AA is highly accurate
and is suitable for tracking objects, such as shopping
carts, robots, and industrial AGVs with relatively con-
strained motions; while FB is less reliable compared to
AA, yet it is more generic and is superior for uncon-
strained human tracking. In the EasiTrack system, the
two approaches can switch as needed on the fly.

2) Map-Augmented Tracking: EasiTrack tracks a user’s
location by fusing the moving distance estimated from
CSI and the moving direction measured by inertial sen-
sors. Although the logic flow is similar to conventional
dead-reckoning, we present an effective, practical design
that incorporates indoor maps for precise tracking in a
scalable way. Specifically, EasiTrack takes the indoor
map as input and transforms it into a weighted graph.
The output graph is then fed into a GPF, which lever-
ages the geometric constraints imposed by the map and
jointly learns the accurate 2-D location and orientation
of a target when it moves. The location estimates are
then displayed to users together with the map. Since the
proposed GPF only uses an ordinary indoor map (e.g.,
an image of the floorplan), it can easily scale to massive
buildings with few costs.

III. MOVING DISTANCE ESTIMATION

Precise estimation of the moving distance of a device has
been a significant bottleneck in indoor tracking and inertial
sensing. Previously, IMUs have been widely exploited in the
way of multiplying step count by stride lengths. This category
of approaches, however, are well known to yield huge errors
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(a) (b) (c)

Fig. 3. Estimating time delays from the TRRS matrix. (a) Maximum TRRSs only appear at a single time point when one antenna presents at a location where
the other antenna was �t time ago, with super resolution. (b) TRRS matrix for a straight moving trajectory of a three-antenna array. (c) TRRS decreases if
the device does not move along the antenna array line, yet evident peaks still exist for deviation angles within 15◦, thus allowing speed estimation.

since stride lengths are difficult to estimate and vary signif-
icantly over time and subjects. In this section, we introduce
two different approaches that can estimate the incremental dis-
placement of a moving device by leveraging rich multipaths
indoors.

A. RF-Based Moving Distance Estimation

1) Estimating Distance by Virtual Antenna Alignment:
Virtual AA was first introduced in [52] for RIM, which esti-
mates the moving distance, heading direction, and rotating
angle. Original RIM resolves all these parameters using more
antennas than what is available on most commodity devices.
In EasiTrack, we employ RIM for moving distance estimation
only and implement it in a special case with only two or three
antennas on a single WiFi chip.

Here, we briefly present the core idea of AA-based distance
estimation. Consider that a two-antenna array is moving along
the line joining themselves (we term the line as the antenna
array line). As shown in Fig. 2, when the radio moves, one
antenna will immediately follow the trajectory of the other.
In other words, the two antennas travel through the same
spatial locations and thus observe similar (ideally identical)
CSI series, one after the other, with certain time delays �t.
Evidently, during �t, the array has traveled for a distance of
�d, which equals to the antenna separation. Note that �d is
fixed and known for a given array. Thus, if we can estimate the
precise time delay �t, we will obtain the accurate speed esti-
mate as v = �d/�t. And by continuously estimating �t, the
real-time speeds along the whole trajectory could be derived.
Then the moving distance is directly calculated as d = ∫ T

0 vtdt,
where T is the total traveling time.

The above intuition leads to a robust mechanism, named
AA, for moving distance estimation in RIM [52]. The key is
to determine the accurate time delay �t, namely, the time
difference when an antenna arrives at a location traversed
by the other antenna (i.e., the two antennas are “aligned”).
Observe that, due to rich multipaths indoors, the CSI mea-
sured at one location could serve as a distinct location profile.
Then, the task is equivalent to identifying the precise time dif-
ference when one antenna observes the most similar channel
measurements with the other. Toward this end, RIM employs
the time-reversal resonating strength (TRRS) [8], [54] as the
similarity metric for CSI.

The TRRS for two CSI H1 and H2 is calculated as follows:

η(H1, H2) =
∣
∣HH

1 H2
∣
∣2

〈H1, H1〉〈H2, H2〉 (1)

where (·)H denotes the conjugate transpose. The above TRRS
has been demonstrated to be robust and sensitive, yielding
super-resolution at the subcentimeter level for both LOS and
NLOS conditions.

To make it more discriminative and robust, we exploit spa-
tial diversity from multiple transmit antennas. Since we only
focus on moving distance using a linear array, we enhance the
TRRS calculation by combining the different pairs of receive
antennas, if any. Given our case of a linear array of three
antennas (numbered as 1, 2, and 3), we combine the TRRS of
the first two antennas (i.e., 1 and 2) and that of the second two
antennas (i.e., 2 and 3) since they have the same �d and thus
expect the same delay time. Taking Fig. 3(b) as an example,
the upper matrix will be averaged with the middle matrix to
augment the aligned peaks.

To pinpoint the precise time delay when two antennas i and j
are spatially aligned, we perform a local mapping between
the CSI snapshot of antenna i at time t, denoted as Hi(t),
against those of antenna j measured within a time window
of 2l, denoted as [Hj(t − l), . . . , Hj(t), . . . , Hj(t + l)]. Fig. 3(a)
shows an example of the TRRS trend [η(Hi(t), Hj(t + k)),
k = −l, . . . , l]. As seen, one can identify the time delay by
looking for the maximum TRRS peak. Formally, we have

�t =
∣
∣
∣
∣
∣
arg max
k∈{−l,...,l}

η̄
(
Hi(t), Hj(t + k)

)
∣
∣
∣
∣
∣
. (2)

While dynamic programming is employed in [52] for peak
finding, our measurements show that by combining the TRRS
of two pairs of antennas, we can confidently find the peaks
by simply looking up the maximum values. In practice, we
further apply a regression around the TRRS peak area to find
a finer-grained time lag, which will break down the resolution
limit by sampling rates, as shown in Fig. 3(a).

Although AA involves CSI mapping, it does not need
any prior training and is immune to environmental dynam-
ics because the mapping is done in a transient window. It is
also demonstrated in [52] to tolerate a deviation of 15◦, i.e.,
the moving direction slightly deviates from the antenna array
line. We also experimentally validate the results, as shown
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in Fig. 3(c). This is a crucial feature for handling realis-
tic movements without requiring the target to move strictly
along the antenna array line, underpinning practical tracking
of targets, such as robots, AGVs, shopping carts, etc.

2) Estimating Distance by Focusing Ball: AA, however, is
unsuitable for human tracking since it is impractical to ask
a person to carry a device and move it along a line during
natural walking. To estimate moving distance for pedestrians,
we incorporate a recently developed method based on time-
reversal FB effect in [65], where a critical statistical property
of indoor RF signal propagation is discovered and modeled:
the spatial distribution of multipath profiles, represented by
CSI, is subject to a determinate function of spatial separation.
It underlies an opportunity to reversely infer the moving dis-
tance from the distribution of CSI, whenever the device moves.
We briefly review the main results below and refer readers for
more details in [65].

Consider the TRRS in (1) for two CSI measured by the
same receive antenna i at two locations L0 and L, denoted as
Hi(t; L0) and Hi(t; L). We have [65]

η(Hi(t; L0), Hi(t; L)) ≈ J2
0

(
2π

λ
d

)

(3)

where λ is the wavelength, d is the distance between L0 and
L, and J0(x) is the zeroth-order Bessel function of the first
kind. From (3), one can estimate the moving distance by cal-
culating the TRRS distribution for one CSI and the subsequent
measurements on the receiver, as detailed in [65].

Comparing with AA, the accuracy of FB for distance esti-
mation will be lower because the TRRS measurements may
slightly deviate the theoretical distribution in practice due
to the nonuniformity of multipath distribution. Yet, the FB
method is superior in its independence of moving directions
and locations since the property arises from the nature of
numerous indoor multipaths. As a result, it is favorable for
human tracking and employed in EasiTrack for this purpose.
A key feature of both approaches is that, different from prior
systems that attempt to resolve and combat multipaths for
tracking [19], [58], EasiTrack distinctively leverages numer-
ous multipaths together: the more multipaths and the more
uniform they are, the better performance it can generally
achieve [52], [65]. As a result, we can estimate distances inde-
pendently from many factors, including location, orientation,
environment, etc.

B. Orientation Estimation

In addition to moving distance, EasiTrack also needs the
moving direction to track a target continuously. EasiTrack
utilizes the ubiquitous inertial sensors and follows standard
operations to derive orientation information [61]. In particu-
lar, we mainly employ the gyroscope to measure the turning
angles and accumulate the measurements to infer the current
heading direction. As we aim at 2-D movements, we project
the gyroscope readings based on the device’s local coordinate
system onto the gravity direction, which can be inferred from
the accelerometer before the device starts moving. By such,
the device can be in any position and does not need to be
placed horizontally.

Inertial sensors are also leveraged to detect movements, and
further determine if the target is making a turn or not, which
will be used later for tracking.

IV. MAP-AUGMENTED PROBABILISTIC TRACKING

Intuitively, the locations can be directly calculated by inte-
grating the consecutive measurements of moving distance
and orientation, in a similar manner as dead-reckoning. This
approach, however, suffers from significant errors due to the
erroneous orientation measured by inertial sensors.

In EasiTrack, we propose to incorporate indoor maps to
achieve precise tracking with coarse-grained orientation and
distance observations. Two opportunities inspire our design.
First, indoor maps impose useful geometric constraints to the
target’s movements. Second, digital maps are nowadays ubiq-
uitously available. In particular, industry efforts have been
carried out to calibrate indoor maps for public places [2].
Research advances have also promoted the automatic genera-
tion of digital maps via mobile crowdsourcing [10], [15].

We are not the first to use maps in tracking. Google
Maps rely on road maps to correct GPS errors. Similar ideas
have also been explored indoors [22], [33], [43]. However,
we leverage indoor maps in a lightweight and scalable way.
Specifically, we devise a GPF based on a graph-based rep-
resentation of an indoor map. We first present the graphical
representation before diving deep into the proposed GPF in
the following.

A. Graph Representation of Map

We take a standard indoor map, in the form of a plain image,
as input. We do not request structured information, e.g., the
knowledge of walls, corridors, and rooms, which is difficult
to obtain from the map. Instead, we merely extract access
information that tells whether a location (a pixel) is accessible
or not. Hence, the map can be, for example, a simple image
with a specific color indicating inaccessible pixels (e.g., black
walls), the most typical form for indoor maps.

Map Discretization: To reduce the computational complex-
ity and achieve real-time tracking, we transform the map into a
weighted graph. We first sample the space (i.e., map) by a set
of uniformly distributed points with a specific grid size s, each
point becoming a vertex. Every vertex could be accessible or
inaccessible, depending on its location on the map (i.e., a pixel
in the image). Then we add edges between a vertex and each
of its adjacent vertexes if the edge does not intersect any obsta-
cles. Each edge is weighted by its physical distance between
two vertexes (which is either s or

√
2s under grid sampling).

By doing such, we build a weighted graph G = (V, E), as
shown in Fig. 4(a). The sampling density s trades off the grid
resolution and the number of vertexes. As we target at sub-
meter accuracy, s should be below 1 m and adapts to different
maps.

Reachability Matrix: Once we have transformed a map into
a weighted graph, we extract the intrinsic geometric properties
by generating a reachability matrix M to represent the pair-
wise reachable distances of |V| vertexes. Each element mij

of the matrix denotes the reachable distance between vertexes
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(a) (b)

Fig. 4. Graph-based map representation. For clarity, a grid size of 0.7 m is used and only partial map is displayed. (a) Graph representation of an indoor
map. (b) Reachability expressed by shortest paths.

Vi and Vj, which is defined as their shortest path distance.
mij will become an infinite value if there does not exist an
unobstructed path between Vi and Vj. Fig. 4(b) illustrates an
example of reachability for one vertex, which basically shows
all the shortest paths starting from it to all other vertexes.

Note that the reachable distance is different from the
Euclidean distance, but rather the walking distance between
two locations. In fact, the reachable distance is usually larger
than the Euclidean distance because the straight line joining
two locations is frequently blocked indoors. To avoid too huge
size of M in case of large tracking areas, in practice, we ignore
too distant vertex pairs and make M a rather sparse matrix.
For example, only elements mij ≤ 10 m will be stored.

In the following section, we present how to design and
implement an augmented particle filter by leveraging the
graphical map with the above-preprocessed results.

B. Tracking by Graph-Based Particle Filter

We employ N particles, X = (X(1), X(2), . . . , X(N)), with
a 3-D joint probability distribution. Each particle is repre-
sented as X(i) = (x(i), y(i), θ (i)), where (x(i), y(i)) denotes its
2-D location and θ(i) is the orientation of the ith particle.

Particle Movement: For the motion measurement (�dt, θt)

at time t, the ith particle is updated as

x(i)
t = x(i)

t−1 +
(
�dt + δ(i)

)
cos

(
θt + α(i)

)

y(i)
t = y(i)

t−1 +
(
�dt + δ(i)

)
sin

(
θt + α(i)

)
(4)

where δ(i) and α(i) are the Gaussian random noises added
to the moving distance and orientation measurements,
respectively.

Particle Weighting: Initially, each particle gets an equal
weight of w(i)

0 = 1/N. At every step, particles undergo two
weighting assignment: 1) any particle that hits any inacces-
sible area (typically the walls) during a move will “die” and
gets eliminated; and 2) all other particles survive and will
be weighted based on the distance-to-live (DTL) defined as
follows.

The key idea to determine a particle’s weight, without the
help of any additional measurements from extra signal sources,
is that a particle should get a larger weight if it is more likely
to survive for a longer distance before it is going to hit some
obstacles, and otherwise a smaller weight. This insight directly
leads to the specification of DTL. As shown in Fig. 5, the DTL

Fig. 5. DTL examples. In case 1, the particle in green has a larger DTL
than the one in red. In case 2, when the particles are moving toward the right,
the red one gets a larger weight. In case 3, both particles hold very large
DTLs, which are thus forced to a fixed max-DTL value. In runtime, the DTL
is approximated from the precalculated DTLs along four primary directions.

for a particle is calculated as the maximum accessible distance
from the particle position along the particle moving direction.
In the case of very long corridors, we set a maximum DTL to
avoid overlarge values (case 3 in Fig. 5).

In principle, the DTL needs to be calculated for every parti-
cle at every step, which is, however, too costly. In the proposed
GPF, we devise an efficient approximation. During the pre-
processing stage (Section IV-A), we additionally calculate the
DTLs in four basic directions (i.e., left, right, up, and down)
in advance. Then the DTL along a certain direction θ can
be accordingly calculated as the sum of the projection of the
DTLs along the two closest basic directions (e.g., right and
up for the example in Fig. 5) on the current moving direc-
tion. Albeit the resulted DTLs are not necessarily equal to the
exact DTLs by definition, we demonstrate in real system that
such approximation is effective and efficient. The main reason
behind this is that only the relative ranking of particle weights,
rather than the absolute values, matter in the GPF. The above
operation retains similar weight ranking as the exact DTLs,
yet significantly reduces the runtime complexity.

Resampling: Our GPF implements a novel approach for
resampling. It first resamples Nlive particles from the impor-
tance distribution, interpreted by particle weights {w(i)

t |i =
1, 2, . . . , Nlive}, by following classical sequential importance
resampling approach [4]. Here, Nlive denotes the number
of surviving particles during the current step. However, for
each dead (thus eliminated) particle, we choose to regenerate,
instead of resampling, a new particle to avoid sample impov-
erishment problem (particles being over-concentrated) [23].
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As shown in Fig. 4(b), we consider a certain neighboring
area centered at the target’s current location for regeneration.
Supposing the target is currently at (xt, yt) closest to vertex Vt,
we first gather all of its reachable vertexes Vj with a reach-
able distance mtj ≤ r and calculate each of their DTLs based
on the current moving direction. Then we perform importance
sampling to draw N − Nlive new particles among these candi-
date locations, using their DTLs as importance distribution.
As shown in Fig. 4(b), the regeneration radius r dynami-
cally increases (white circle) when the target is detected to
be turning and decreases otherwise (green circle).

Target Location Estimation: Finally, at each step, we esti-
mate the target’s location using information of all the particles.
Intuitively, the target location can be determined as the
weighted centroid of all particles’ locations. However, the cen-
troid may be an inaccessible location, or the line joining it
to the current location may intersect a wall. Therefore, in
EasiTrack, we resort to a similar concept of medoid. In general,
a medoid is a representative within a data set whose average
dissimilarity to all the objects in the set is minimal. Compared
with centroid, using the medoid ensures that the resulted tar-
get location is always valid. Formally, the target location is
estimated as the location of particle X(p	)

t , where

p	 = arg min
i∈{1,...,Nlive}

Nlive∑

j=1

φ
(

X(i)
t , X(j)

t

)

w(j)
t

(5)

where φ(X(i)
t , X(j)

t ) denotes the Euclidean distance between the
two particles’ locations. Then the series of location estimates
are smoothed and displayed to users.

C. Combating Accumulative Orientation Errors

Gyroscope is known to suffer from significant accumula-
tive errors. As reported by the latest work [37], the error can
accumulate to above 50◦ after 2 min of running. According to
our experimental experience, it could produce over 30◦ errors
for a single 90◦ natural turning. These considerable errors in
orientation, if not calibrated, will lead to significant location
errors that even the GPF fails to correct because all particles
will be guided to move in the wrong directions.

To eliminate the accumulative errors, we devise a technique
to reset the orientation opportunistically. The key observation
is that when the target is moving along a roughly straight path
but not making a turn, the moving trajectory during this non-
turning period offers a useful hint to infer the current heading
direction. EasiTrack leverages these hints and performs oppor-
tunistic moving direction recalibration. Specifically, once such
a nonturning segment is detected, we reset the current moving
direction by estimating the centerline direction of the straight
segment. For common behaviors, the target is moving straight
rather than turning most of the time. Thus, we can employ
the reset operation quite frequently. And by continuous recal-
ibration, the accumulative direction errors will be effectively
mitigated, even over very long running.

(a) (b) (c)

Fig. 6. EasiTrack hardware.

D. Obtaining Initial Location

As EasiTrack only measures the moving distances and direc-
tions, it needs a global location to initiate. The particle filter is
capable of determining the initial location by initializing a set
of particles uniformly distributed over all possible locations.
With a sufficient number of random particles over the area
of interests, the algorithm will progressively converge after
a certain time. The initial location will be locked backprop-
agation from the converged location. The traveled path can
be retraced, as well. Once the initial location is found, the
system will reduce to a small number of particles for effi-
ciency. Considering a real application and system, a practical
alternative is to leverage the last-seen GPS signals at building
entrances, as well as to request manual inputs from end-users.
To prove the concept, we implement an anchor as such by
using an AP with a directional antenna. Although these tech-
nologies may not offer initial location at high accuracy, the
caused errors will later be overcome by the proposed GPF, as
will be demonstrated in Section VI. Therefore, the initial loca-
tions could be gathered by various methods, such as occasional
GPS indoors [11], potential indoor distinct landmarks [43],
ubiquitous BLE beacons [25], and other conventional local-
ization schemes [61]. Compared to using particle filtering,
initial locations provided by external information generally
offer a shorter time-to-first-fix. In the evaluation, we exper-
iment with both approaches mentioned above and compare
the results.

V. IMPLEMENTATION

We build a fully functional real-time system of EasiTrack,
which involves many implementation details. We briefly men-
tion some of them here.

Hardware: We implement EasiTrack using commercial
WiFi NICs. To build a mobile client (named an EasiTracker),
we use an Intel Galileo Gen2 microcontroller board, which
is attached with a Qualcomm Atheros 9k series chipset and
a Bosch Sensortec BNO055 IMU. Fig. 6 illustrates our hard-
ware equipment. The board runs a Linux OS, and we modify
the driver to report CSI. The WiFi chipset comes with three
antennas, which are spaced linearly at a default separation of
4 cm (to fit the enclosure of the Galileo board) for the AA
method. The antennas can be arbitrarily arranged for the FB
method. We run another board with the same WiFi card as an
AP, which is configured to the broadcast mode on a 5-GHz
channel. The clients use chip antennas for consideration of
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compact form factor, while the AP is equipped with the stan-
dard line antennas to provide better coverage. Although we
use Galileo board for experiments, EasiTrack is ready to run
on commodity smartphones once the CSI becomes accessible
on them.

Software: We first prototyped all algorithms in MATLAB
and Python. The codes are later all translated into C++ to
build the real system. We develop a tool in C++ running on
Galileo Gen2 to collect CSI and sensor data, which are sent
back to a host machine via Bluetooth. Currently, we use a
Surface Pro as the host to run the tracking system and display
the results with a GUI [Fig. 6(b)], all implemented in C++.

CSI Denoising: CSI measured on COTS WiFi contains
phase offsets, such as carrier frequency offset (CFO), sam-
pling frequency offset (SFO), and symbol timing offset (STO),
in addition to initial phase offset caused by the phase-
locked loops. EasiTrack is immune to the annoying initial
phase distortions, which can only be manually calibrated
previously [58], by taking the absolute value in (1). We cal-
ibrate the other linear offsets by using the phase cleaning
approach in [19].

Integrating Multiple Receive Antennas: The proposed AA
method requires a minimum of two antennas as an array. In
our implementation, the WiFi chipsets have three antennas.
To fully utilize them, we arrange them in a uniformly spaced
linear array. Then we integrate the results of two pairs: the first
and second antennas as one pair and the second and the third
as the other. The FB method works with a single antenna, yet
we also fuse the TRRS of all receive antennas to facilitate the
distance estimation.

Movement Detection: We employ inertial sensors to deter-
mine whether the target is moving. Only when the device is
detected to move will EasiTrack estimate the moving distance.
To mitigate the interference of irrelevant movement (e.g., hand
motions) in human tracking, we additionally apply a mask to
detect if a user is walking or not by identifying steps using
IMU [43], [61].

Tracking in Very Large Areas: EasiTrack uses a single
AP to achieve ubiquitous tracking with remarkable coverage.
Technically, it works in any place covered by the AP, regard-
less of LOS or NLOS conditions. In practice, one single AP
may not be sufficient to cover a very large tracking area fully.
In such a situation, multiple APs are required to provide full
coverage. Accordingly, EasiTrack needs to handle handover
between different APs when the client roams about the space,
although it always uses only one AP at one time for tracking.
We use a straight-forward RSS-based handover scheme in our
implementation for this purpose.

Map Preprocessing: EasiTrack needs merely information on
accessible and inaccessible areas from the ordinary images
of indoor floorplans. This information could be automatically
recognized from pixel colors. For example, usually, the walls
are marked in darker colors while open spaces are blank and
white (or vice-versa). However, depending on the quality of the
obtained map image, there might be some interferences (e.g.,
texts, dimensions, etc.) that affect automatic recognition. To
cope with that we currently need to manually preprocess the
map to highlight all the obstacles (mainly walls) with a specific

Fig. 7. Comparison of AA and FB.

color. According to our experience, it takes about 10 min for
one who knows the basic operations of Photoshop to process
a normal map.

VI. EVALUATION

We evaluate our system in real-world scenarios using COTS
WiFi. We then deploy EasiTrack in five different build-
ings to evaluate human and cart tracking and two industry
manufacturing facilities to test AGV tracking.

A. Performance on Distance Estimation

Methods: We first evaluate the accuracy and impacting fac-
tors of the proposed distance estimation method, AA, and
compare it with FB. To do so, we put the EasiTracker on
a cart and move it roughly along a straight line. We evaluate
different traces of about 10-m length and perform both AA and
FB on the collected CSI, respectively. We set up a camera to
capture the ground-truth moving distances.

Overall Accuracy: Fig. 7 compares the overall performance
of AA and FB on moving distance estimation. As seen, AA
achieves a remarkable median error of about 0.25 m and
90%tile error of 0.69 m, while FB yields 0.75 m and 1.82 m
errors, respectively. Although the performance gains of AA
come at the cost of relatively constrained movements, we
believe AA opens up a wide range of exciting opportunities
due to the high accuracy, especially for tracking machines
and objects, such as AGVs, shopping carts, robots, etc. In
the following, we study several factors that may impact AA’s
performance. The impacting factors of the FB method have
been extensively studied in [65]. Thus, we only evaluate
the overall tracking performance in the next section when
incorporating it in EasiTrack.

Sampling Rate: Certain sampling rates will be needed by
EasiTrack to ensure enough resolution in distance estimation;
otherwise, the peak resolution [recall Fig. 3(a)] is limited.
Fig. 8 shows the impacts when downsampling the CSI data
from 200 to 20 Hz. The results show that a sampling rate of
200 Hz, which we use in EasiTrack, is adequate for normal
speeds of about 2 m/s.

Antenna Diversity and Separation: Fig. 9 shows the diver-
sity of antenna pairs. We test different combinations of the
three antennas available on our device as well as fuse two pairs
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Fig. 8. AA with respect to sampling rate.

Fig. 9. AA with respect to different pairs.

together. As seen, AA produces consistently high performance
using different antenna pairs, which is further improved when
combining multiple pairs. We also examine different antenna
separations, ranging from λ/2, λ, 3λ/2 to 2λ. As shown in
Fig. 10, different separations only see negligible differences.
Yet, as a rule of thumb, the separation should be larger than
λ/2; otherwise, coupling effects will come into play.

B. Benchmark Performance

Methods: Now we study the tracking performance of the
EasiTrack system. We deploy the system on one floor of a
typical office building, as shown in Fig. 11. There are rooms
separated by dry walls, concrete pillars, and elevators inside
the floor. We place the AP in the middle of the building to
provide good coverage. The AP works on channel 153. There
are regular WiFi traffics on the same and adjacent channels.
During experiments, people are working around as usual.

For AA-based EasiTrack (EasiTrack-AA), we place the
device on a cart and push it around. While for FB-based
(EasiTrack-FB), we ask a human to hold the device in hand
and walk naturally. To study the quantitative location errors,
we mark a set of checkpoints at a density of about every 2 m.
The ground truth is recorded when a user passes by a check-
point. Then we employ several users to walk (or push a cart)
around different areas. Multiple users can be tracked at the
same time, no matter whether they are testing EasiTrack-AA
or EasiTrack-FB. Due to budget constraints, we build three
tracking kits (each consisting of a Galileo Gen2 board and a

Fig. 10. AA with respect to antenna separations.

Surface Pro), although EasiTrack can support any number of
tracking kits. The results are then analyzed to evaluate the two
methods, respectively.

Overall Performance: Fig. 11 shows two examples of the
tracking results. Fig. 12 shows that both EasiTrack-AA and
EasiTrack-FB achieve submeter median accuracy. Specifically,
EasiTrack-AA yields a median 0.58 m and 90%tile 1.33-m
error, respectively, for cart tracking. Surprisingly, EasiTrack-
FB achieves only slightly worse performance for human
tracking with a median error of about 0.70 m, and a 90%tile
error of 1.97 m. Compared to the distance estimation accu-
racy in Fig. 7, the overall tracking accuracy of EasiTrack-AA
is slightly lower, which is mainly limited by orientation errors
arising from sensors. In contrast, the accuracy of EasiTrack-
FB improves a lot, contributed by the proposed GPF, which
effectively corrects location errors with a map.

Impacts of Particle Number: A unique feature of EasiTrack
is that it achieves excellent performance using a small number
of particles thanks to the graph-based model. We investigate
how the performance would change concerning the amount
of particles, ranging from 20 to 800. As shown in Fig. 13,
EasiTrack achieves considerable performance with only 100
particles. The results show that EasiTrack requires orders of
magnitude less particles than existing approaches [22], [33].
However, 20 particles are too few and may lead to large tail
errors, especially for EasiTrack-FB. In practice, we recom-
mend a minimum of 50 particles.

Impact of Initial Locations: When using manual inputs for
the initial location, it is interesting to examine how sensitive
it is to the uncertainties in the initial location. We add random
errors to the start point, from 0.5 to 2 m, and evaluate the traces
with the erroneous initial locations. As shown in Fig. 14, the
proposed GPF overcomes these errors and maintains similar
performance, which only slightly degrades to a median 0.73 m
and 90%tile 1.56-m error for EasiTrack-AA when there are 2-
m errors in initial locations. In other words, EasiTrack does
not rely on precise initial locations to start. Instead, it only
needs a coarse-grained input, which again could be provided
by the user, opportunistic GPS, or other available anchors.

In the case of no available initial location, EasiTrack
employs random particles to search for it. The system is
demonstrated to fix a starting point by using 1000 particles
successfully. In our experiments, EasiTrack will converge to
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(b)(a)

Fig. 11. Benchmark floor and example tracking traces. (a) Human tracking with EasiTrack-FB. (b) Cart tracking with EasiTrack-AA. True traces are marked
in dashed black lines.

Fig. 12. Overall tracking accuracy.

Fig. 13. Impacts of particle amounts.

the correct location after about 20–40 s of walking (corre-
sponding to about 25–50 m in our case). More practically, the
system fixes the first location after about four turns. Taking
the trace in Fig. 11 as an example, the system converges after
passing through the left-bottom corner. In practice, however,
the delay to first fix depends on the floor layout and how a
user walks. Hence, we believe the results promise continuous
tracking for applications insensitive to initialization delays.

Benefits of Direction Reset: We individually study the ben-
efits of the direction reset module. To do so, we rerun all
the traces offline by disabling the direction reset feature and
compare the results in Fig. 15. As shown, large errors are

Fig. 14. Impacts of initial location errors.

Fig. 15. Benefits of direction reset.

remarkably reduced for EasiTrack-FB, with a 90%tile error
of 3.1–1.7 m, by automatic direction reset, which eliminates
large accumulative direction errors caused by sensors. For
EasiTrack-AA, it achieves marginal accuracy gains. The rea-
son is that the direction error is less significant than human
walking when placing the device on a cart. However, when
direction errors accumulate, the direction reset will take effect.

Coverage: Our benchmark evaluation demonstrates
EasiTrack’s tracking coverage in a typical office of
36 m × 22 m. To demonstrate the coverage limit, we
test tracking in a large building of about 100 m × 35 m
with many concrete walls and pillars, where one AP is not
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Fig. 16. Tracking with handover in large areas.

sufficient to cover the entire floor and, thereby, we can test
tracking with handover between two APs. As shown in
Fig. 16, we place two APs at two diagonal corners of the
building, each roughly covers half of the tracking areas. The
results validate that EasiTrack roams smoothly between the
two APs and achieves similar high accuracy under either
AP’s coverage, as well as in the overlapping areas (middle
corridors), thereby allowing it to track in vast areas by merely
setting up additional APs.

C. Real-World Deployments

To verify the tracking accuracy and deployment simplicity
of EasiTrack, we carry out real-world deployment at multiple
sites with two different scenarios considered: human tracking
and AGV tracking. For these buildings, we are not permitted to
set up checkpoints for ground truth. Thus, we could only ask
the testers to save real-time outputs of the EasiTrack system.
We then depict the results using gradient colors and compare
them with the traveled paths.2 Our onsite testing lasts for at
least 2 h to several days for different sites and involves at
least two clients at each site. In the following, we randomly
show one or two tracking traces, among many others, for each
scenario, due to space limitations.

Tracking Humans in Buildings: To test EasiTrack-FB for
human tracking, we deploy it in a technology museum, a hotel
suite, and an office building. During tracking, there are people
working routinely around.

Fig. 17 illustrates the tracking results at the three different
sites. As shown, over all scenarios, with varying users of
testing and completely different environments, EasiTrack-FB
achieves consistently high accuracy and recovers the moving
trajectory gracefully. In particular, in the museum [Fig. 17(a)],
which is a nonregular indoor space, EasiTrack still tracks
accurately, demonstrating its performance in the area with
various layouts. In Fig. 17(c), the user’s movements around a
bed inside a master room are also successfully tracked. It is
worth noting that Fig. 17(b) demonstrates that EasiTrack can
track the target accurately over an area of 50 m × 50 m, with
a single AP placed in the center.

Tracking Machines in Factories: We have tested EasiTrack-
AA for cart tracking in the benchmark building. We further
test the performance for AGV tracking in two manufacturing
facilities with different types of AGVs. Since we do not have

2For clarity of presentation, we only show the raw traces without the GPF
and the final tracking results. The ground truths of the tracking routes are not
displayed, yet can be easily inferred therein.

access to the facilities, the systems are deployed and tested by
our collaborators at their facilities. The results are shown in
Fig. 18.

For the first facility [Fig. 18(a)], the AGV is rather big
and moves slowly at around 0.5 m/s. The tester installed
EasiTracker inside the AGV with a metal enclosure, which
causes severe signal attenuation and makes the tracking very
challenging. During testing, the AGV moves along a rectan-
gular area for minutes to hours, and our system tracks its
real-time location. Fig. 18(a) depicts the tracking traces for
about 10 min. As seen from the raw traces without GPF,
under the challenging deployment scenario, the distance esti-
mation is not very accurate, yet still rather consistent over
different rounds. Meanwhile, for this AGV, the direction errors
accumulate considerably, making the raw traces drift quickly.
Nevertheless, since the moving routes are relatively limited,
EasiTrack still tracks the trajectories well, and error does not
accumulate over time.

In Fig. 18(b), the AGVs are smaller yet move faster at var-
ious speeds up to about 2.5 m/s, touching the upper limit that
200 Hz sampling rate can support. Two AGVs were being
tracked at the same time, with our EasiTracker attached to the
front. The AGVs make in-place turns to change direction and
move quite freely inside a rectangle area. Fig. 18(b) illustrates
a typical moving trace with our system’s tracking results. The
results demonstrate that EasiTrack recovers the AGVs’ trajec-
tories, although errors occur in distance estimation due to the
fast speeds (regarding our current sampling rate) and the harsh
industrial environments.

Our current deployment in industrial facilities is limited to
relatively small areas to prove the feasibility. Deploying and
testing in more extensive areas is future work.

D. System Latency

EasiTrack runs in real-time without perceivable delays to
end-users. It involves a constant delay due to the window
length of l for calculating the TRRS matrix [recall Fig. 3(b)].
Consider l = 20, it introduces a delay by only 0.1 s given a
sampling rate of 200 Hz. EasiTrack outputs a distance estimate
for every CSI sample, i.e., every 5 ms. To reduce computation,
we will process a batch of distance estimates (e.g., 10) and
report location updates every 50 ms. The user in practice can
decide the update rate.

We are interested in the system complexity introduced by
different modules, especially, distance estimation and GPF. We
first measure the resource utilization on Surface Pro with an
Intel Core i7 4650 U and 8.0-GB RAM. The system occupies
about 5% of the CPU and about 10 M of RAM when running
without the GPF. The usage increases to about 8% of CPU
and 180 M of RAM when the GPF runs with 100 particles,
and further to about 12% of CPU with similar RAM usage
when using 400 particles in the GPF.

It is also interesting to see if the system can run on embed-
ded devices. To do so, we port the system into Linux and run it
on an embedded board equipped with dual-core Cortex-A7 @
up to 1.2 GHz. The results show that EasiTrack runs in real-
time with 400 particles by utilizing about 35% of the CPU
and about 80-MB RAM (the memory usage is smaller than
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Fig. 17. Human tracking in three different buildings. (a) Technology museum. (b) Office building. (c) Hotel suite.

(a) (b)

Fig. 18. AGV tracking in two facilities. In both cases, the AP is installed outside the shown areas.

that on Surface Pro because we do not involve a user GUI for
this embedded implementation).

VII. DISCUSSION

Aiming at an accurate tracking system that is easy to deploy
worldwide, there is room for improvements for EasiTrack.

Map Availability and Quality: EasiTrack leverages dig-
ital floorplans by seeing the underlying trend that indoor
maps are becoming more and more widely available. Driven
by the massive demand in indoor positioning, the indus-
try has been striving to gather and construct indoor maps
for world-wide buildings—usually termed as indoor mapping.
Examples include giant companies include Google, Apple,
Baidu, and start-ups, such as IndoorAtlas, Aruba Meridian,
Jibestream, Mapwize, etc. Different from some traditional
floorplan in plain images, these newly constructed maps con-
tain detailed and comprehensive information, some of which
are even interactive. It is promising that with proper APIs,
these maps could be directly inputted into EasiTrack without
any preprocessing.

Map Understanding: Currently, some manual efforts are
required to preprocess a map (i.e., highlighting the inacces-
sible pixels). Since we only need accessibility properties of
pixels, this could be done automatically with the help of
sophisticated imaging processing techniques, such as edge
extraction [29]. We also note that the preprocessing will not be
needed for modern maps captured in structured formats with
high quality [2], [5].

Map Learning: Our graph model treats all vertexes (loca-
tions) equally. With data gathered from real-world deploy-
ment, the model could dynamically learn the probabilistic

distributions of different locations. For example, people may
tend to make a right turn at a certain location, while most go
straight at another. By progressively learning this information,
the tracking performance could be improved continuously.
Also, the system could be extended to discover obstacle
changes (e.g., newly appeared or moved furniture) by learning
from the history tracking data.

Large Open Spaces: As demonstrated by our real-world
deployments, EasiTrack generalizes to different buildings.
However, it still needs improvement in the case of large open
spaces (e.g., a great hall), where the map hardly offers any
useful information.

VIII. RELATED WORKS

There are numerous research on indoor localization using
WiFi [27], [42], [61]. We briefly review approaches based
on fingerprinting, triangulation, and combination with inertial
sensing. We also review the literature on indoor maps.

Fingerprinting: Fingerprint-based approaches collect signal
measurements at different locations as wireless fingerprints
(which could be RSSIs of multiple APs [6], [7], [26], [33],
[39], [40], [43], [48]–[51], [62] or CSI measurements [8],
[35], [54]), and then perform pattern matching to localize.
The best systems report a median accuracy of 0.6 m [8],
which, however, could significantly degrade to meters due
to environmental dynamics [26] and temporal changes [50].
Centimeter accuracy is achieved by using CSI as finger-
prints [8], [9], [54], which, however, need extensive training
that prohibits its practical applications. Also, these systems
are hard to deploy since they need an intensive site survey to
bootstrap and potential recalibration due to changes.
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Triangulation: Triangulation is widely exploited to local-
ize targets based on range or angle estimates to multiple
APs. Early systems attempt to infer ranges from sig-
nal strengths using a propagation model [11], [34], [53],
which are limited to errors around 2–4 m at best. Recent
efforts employing ToF [14], [31], [38], [41], [59] and
AoA [13], [19]–[21], [57], [58] achieve state-of-the-art accu-
racy at the decimeter level. However, these systems usually
require many antennas (e.g., as high as 8 [58] while typ-
ical APs have three) or large bandwidths (e.g., [41] uses
frequency hopping). Moreover, they are difficult to deploy also
because the requirements of extremely precisely installed APs:
small errors in AP location or orientation result in significant
location errors to them.

Inertial Sensing: Inertial sensing has been leveraged as stan-
dalone or integrated tracking systems [17], [31], [33], [34],
[37], [43], [49], [61]. While being easy-to-deploy, inertial sen-
sors suffer from accumulative errors. Recent innovations have
promoted orientation sensing to a median orientation error
around 10◦ [37], [68]. However, distance estimation for pedes-
trians using inertial sensors is challenging and still open [61].
As a result, prior works using inertial sensing yield errors at
meters.

Recent innovation [52] enables RIM at high precision,
which underpins the foundation of accurate indoor tracking.
WiBall [65] also derives moving distance from the RF signals
and yields location estimates by combining inertial sensors
for direction and floorplans for correction. Compared with
EasiTrack, however, WiBall is less accurate in distance esti-
mation. More importantly, it applies rule-based correction and
relies on detailed floorplan with rich structured knowledge
about corridors, doors, crossings, walls, etc., which are costly
to obtain. In contrast, EasiTrack employs probabilistic track-
ing using a plain image of the floorplan, rendering it robust
and scalable.

Indoor Maps and Particle Filtering: We further review
research on indoor maps, which would be the indispensable
parts of indoor location systems to enable many applications,
yet are less explored. Indoor maps are becoming increas-
ingly available by dedicated industrial engineer efforts [2] and
crowdsourcing [3], [10], [12], [15], [36], [67]. They can be
utilized to ease the burden of fingerprint calibration via crowd-
sourcing [33], [43], [49] or to reduce tracking errors [16], [17],
[22], [47]. Particle filtering has been widely used for this sen-
sor fusion purpose [16], [22], [24], [33]. However, prior works
usually implement it in a continuous map space, rely on a
secondary measurement system (e.g., WiFi fingerprinting) for
weight updating [16], [24], and typically require a few thou-
sands of particles (e.g., 3000 in [22]). EasiTrack differs in its
graph-based model that enables using less than 100 particles
and particle weighting using map information only, without
additional signals or constraints.

Other Modalities: For completeness, we refer to
modalities other than WiFi that are also exploited for
indoor tracking, such as RFID [44], [46], [55], [60],
ultrasound [30], [32], [66], visible light [28], [63], [64], [69],
Bluetooth [18], [25], etc. However, none of these techniques
are as ubiquitous as commercial WiFi infrastructure.

IX. CONCLUSION

In this article, we presented EasiTrack, an indoor location
system that achieves decimeter-level accuracy with broad cov-
erage of both LOS and NLOS areas and scales to massive
buildings with almost zero cost and an unlimited number of
users. It achieves these distinct and strong sides by using a
single unknown AP, without knowing its location/orientation,
making it a promising solution for ubiquitous indoor track-
ing in practice. We contributed an approach for CSI-based
moving distance estimation and a map-augmented tracking
algorithm. We implemented a real-time system and deploy
it in different buildings and facilities under real-world set-
tings to track humans and machines. The results demonstrate
that EasiTrack scales over various conditions with consistent
submeter accuracy and outperforms prior works with many
distinct and strong sides.
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