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Abstract—The continuous development of 802.11ad technology
provides new opportunities in wireless sensing. In this work, we
propose ViMo, a calibration-free remote Vital sign Monitoring
system that can detect stationary/non-stationary users and esti-
mate the respiration rates (RRs) as well as heart rates (HRs) built
upon a commercial 60GHz WiFi. The design of ViMo consists of
two key components. First, we design an adaptive object detector
that can identify static objects, stationary human subjects and
human in motion without any calibration. Second, we devise
a robust HR estimator, which eliminates the respiration signal
from the phase of the channel impulse response (CIR) to remove
the interference of the harmonics from breathing and adopts
dynamic programming (DP) to resist the random measurement
noise. The influence of different settings, including the distance
between human and the device, user orientation and incidental
angle, blockage material, body movement and conditions of
multi-user separation are investigated by extensive experiments.
Experimental results show that ViMo monitors user’s vital signs
accurately, with a median error of 0.19 BPM and 0.92 BPM,
respectively, for RR and HR estimation.

Index Terms—Heart rate estimation, respiration signal elimi-
nation, wireless sensing, smoothing spline, 802.11ad technology.

I. INTRODUCTION

Continuous monitoring of respiration as well as heart rate
is critical for early detection and prevention of potentially
fatal diseases. Current solutions usually require users to wear
dedicated devices such as wrist-worn sensors [1] or chest
straps [2], which require to contact the human body during
the monitoring, making them less convenient and comfortable.
With the rapid development of the Internet of Things (IoT),
wireless sensing has received increasing attention in recent
years because of the ubiquitous deployment of wireless devices
[3]–[7]. It has been proved that the presence of human will
affect wireless signal propagation, enabling the functionality
of wirelessly monitoring human subjects by analyzing the
electromagnetic (EM) wave [8]–[11].

Recent works of wireless human vital signs detection lever-
age the existing communication infrastructure (e.g. WiFi) to
provide a pervasive, user-friendly and affordable solution for
health status monitoring. Over the past decade, great efforts
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have been put into designing and testing different architec-
tures for robust vital sign monitoring using off-the-shelf WiFi
devices [12]–[18]. However, due to the relative low carrier
frequency of WiFi systems, the antenna number of 2.4/5GHz
WiFi is small, rendering a low spatial resolution. Besides, the
narrow bandwidth of WiFi systems results in a coarse range
resolution (7.5 meters with bandwidth 20MHz). Therefore,
when there is more than one user present, the received radio
frequency (RF) signals are reflected by the multiple users and
it is hard to extract the vital signs for each of them. Thus,
most of the works assume there is a single person [12]–[14],
or the breathing rates of different users are distinct [15]–[17].
Moreover, since the perturbation caused by the heartbeat is
very small (i.e., 0.2 ∼ 0.5 mm [19]), the embedded heartbeat
signal has an extremely low signal-to-noise ratio (SNR). It
is extremely difficult, if possible, to use commodity WiFi to
estimate the heart rate [18].

In this work, we break down the limitation by leveraging
an opportunity in the emerging 60GHz WiFi (e.g., 802.11ad
[20]), which is already available in commercial routers [21].
We present ViMo, the first system that achieves multi-person
stationary/non-stationary detection and vital signs monitor-
ing using an impulse-based commodity 60GHz millimeter
wave (mmWave) device. Different from 2.4GHz/5GHz radios,
60GHz WiFi offers high directionality with large phased arrays
in small size thanks to millimeter-wavelength and precise time-
of-flight measurements brought by the large bandwidth. The
advance in 60GHz radios allows higher spatial resolution and
range resolution, making it possible to monitor respiration as
well as heart rate for multiple persons simultaneously.

However, enabling multi-person vital signs monitoring using
60GHz WiFi is not an easy task. To achieve this goal,
we need to deal with multiple challenges. First, it is non-
trivial to locate human subjects before vital sign estimation.
Due to the high carrier frequency, signals attenuate rapidly
over the propagation distance, making it difficult to locate
distant targets. Furthermore, the automatic gain control (AGC)
module on the chip changes the amplitude of the CIRs over
different measurements. To address this challenge, for each
measurement, we employ two constant false alarm detectors
in range and angle dimension to adaptively estimate the noise
level in 3D space, and thus provide an adaptive threshold for
target detection.

Second, given the reflections from multiple users and sur-
rounding objects, it is still difficult to differentiate static
reflecting objects and stationary/non-stationary users. To over-
come this challenge, we devise a novel motion detector by

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 30,2020 at 19:37:35 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3004046, IEEE Internet of
Things Journal

2

leveraging the sensitivity of CIR phase to the change of
travelling distance of EM waves, which can identify the large
random body motion (RBM) as well as periodic breathing
motion from human subjects and measurement noises from
static reflecting objects (e.g., wall, door and furniture).

Third, human chest motions are induced by both respiration
and heartbeat, and the distance change caused by heartbeat
is magnitude weaker than the respiration signal. Although
heart rate is usually higher than the respiration rate, it is
hard to distinguish the true heart rate from harmonics of the
breathing signal. To address this challenge, we first estimate
the waveform of the breathing signal and then eliminate it
in the time domain. To further tackle the problem that the
heartbeat signal can easily submerge in random measurement
noises, we leverage the stationary property of the heart rate and
apply dynamic programming (DP) algorithm in spectrogram
to obtain an accurate estimation of the heart rate.

We have built a prototype of ViMo by reusing commercial
off-the-shelf (COTS) 60GHz WiFi as a radar-like device and
conducted extensive experiments to evaluate the performance
under different settings, including single-person and multi-
person scenarios, LOS and NLOS conditions, etc.. Experimen-
tal results show that ViMo achieves accurate estimations, with
a median error of 0.19 BPM and 0.92 BPM, respectively, for
RR and HR estimation. In addition, ViMo detects multiple
users precisely, with a detection rate of 97.86%. We believe
ViMo takes an important step towards practical multi-person
vital sign monitoring via 802.11ad radios.

The rest of the paper is organized as follows. We review
the related works in Section II. We overview the system and
theoretical model in Section III, followed by multi-person
detection in Section IV and heart rate estimation in Section
V. The performance is evaluated in Section VI. We conclude
the work in Section VII.

II. RELATED WORK

The RF-based vital signs monitoring utilizes wireless signal
to track chest movement, which can mainly been categorized
as 2.4GHz/5GHz WiFi based and radar based method.

2.4GHz/5GHz WiFi based: Compared with the conven-
tional methods which require a user to wear dedicated sensors
[22], WiFi-based monitoring solutions can use ubiquitous off-
the-shelf devices to estimate vital signs contactlessly. Due to
the availability of the received signal strength (RSS) mea-
surement on most WiFi devices, UbiBreathe [23] is proposed
to estimate respiration rate using RSS. However, since RSS
is not sensitive to the minute chest movements, the setting
should be well designed to get a good accuracy. Compared
to RSS, channel state information (CSI) is a fine-grained
information that can portrait the EM wave propagation and
is more sensitive to the minute chest movement [12]–[17].
However, due to the omni-directional propagation and the
narrow bandwidth, it is impossible to isolate each individual’s
breathing signal. So most of the previous works either study
single person scenario [12]–[14] or assume the breathing rates
of each individuals are distinct [15]–[17]. Besides, since the
perturbation caused by the heartbeat (0.2 ∼ 0.5 mm) [19] is

much smaller than the wavelength of 2.4/5GHz WiFi system
(60 ∼ 120 mm), the phase change caused by the heartbeat
is very small, resulting in a low SNR. Thus, most of the
conventional WiFi-based systems cannot estimate heart rates.

Radar based: To overcome the coarse range as well as
spatial resolution limitation in WiFi-based systems, researchers
try to build dedicated radar systems to remotely monitor vital
signs. Ultra-wideband (UWB) [24]–[26] and Doppler radar
[27]–[36] either directly measure the distance between chest
and device or the relative speed change of chest movement to
get the estimation of chest displacement caused by vital signs.
However, the assumption of a single user in these works limits
the further deployment of the system. Frequency Modulated
Carrier Waves (FMCW) is built in [37] [38] to measure both
the respiration rate (RR) and heart rate (HR). Leveraging the
fact that different users may locate in distinct bins (a.k.a, range
buckets), the vital signs of multiple people can be monitored
simultaneously. Finer spatial resolution is achieved in mmVital
[39] by using a pair of horn antennas, which investigates the
use of 60GHz mmWave signal to simultaneously monitor vital
signs in a multi-user case. However, most of these works [25]–
[28], [37]–[39] try to directly utilize frequency analysis and
bandpass filter (BPF) to estimate the heart rate. These methods
are easy to fail when the subject’s heart rate is close to the
respiration harmonics. The polynomial fitting has been used
[30] [31] [35] to remove respiration motion. However, the
order needs to be carefully selected by empirical experience,
and under-fitting or over-fitting can be easily triggered when
the experimental setting is changed (e.g., change of sampling
rate or window length).

In this work, we present ViMo, a multi-user Vital sign
Monitoring system using a commercial 60GHz WiFi. The
system can locate stationary/non-stationary users without cum-
bersome calibration. Furthermore, we eliminate the waveform
of the breathing signal before estimating the heart rates in the
time domain by using the smoothing spline, which can get rid
of the harmonics of the respiration without dedicated choose of
hyperparameter as in polynomial fitting. To further reduce the
impact of the measurement noise and make robust estimations
of heart rate, ViMo leverages the stationary property of heart
rate and utilizes both the time and frequency diversity for heart
rate estimation.

III. SYSTEM DESIGN AND THEORETICAL MODEL

A. System Overview

ViMo is a wireless system that can accurately detect human
subjects and estimate their vital signs by using purely the
reflections of RF signals off the users’ bodies. The processing
flow of ViMo is shown in Fig. 1.

Enabling multi-person contactless vital sign monitoring
using 60GHz WiFi faces several challenges. First, due to
the fast attenuation of 60GHz RF signal [40], the strength
of signal reflected at a large distance is much smaller than
that at a short distance. Therefore, it is hard to detect human
subjects without prior calibration, let alone detecting the
stationary/non-stationary status of human subjects. Second, the
minute heartbeat signals are easily corrupted by measurement

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 30,2020 at 19:37:35 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3004046, IEEE Internet of
Things Journal

3

CIR 
collection

Reflecting
Object Detector

Motion
Detector

Target
Clustering

Breathing Signal
Elimination

Heart Rate
Estimator

# of persons and
 vital signs

Fig. 1: An overview of ViMo

noises and concealed by the large scale respiration signals.
Thus, dedicated systems should be designed to resist the
interference from respiration and measurement noises when
estimating the heart rate.

In order to detect human subjects at various distances, we
apply a reflecting object detector that adaptively estimates the
noise level at various distances and thus detects the presence of
reflecting objects. To further differentiate the human subjects
from static objects, we design a motion detector that identifies
static objects, stationary human subjects and human with large
body motion. A target clustering module is implemented
to further identify the number of human subjects and their
respective locations. Moreover, to make a robust estimate of
the heart rate, we first devise a breathing signal eliminator
to reduce the interference from the respiration signal after
the breathing rate is estimated. The eliminator can remove
the harmonics of the breathing signal, as well as deal with
the spread of the breathing frequency component when the
breathing period slightly changes. To tackle with the random
measurement noise, we leverage the stationary property of the
heart rate and apply dynamic programming to estimate the
heart rate utilizing both the frequency and time diversity.

B. CIR Modeling with Vital Sign Impact

Assume the travelling distance of the EM wave reflected by
human chest is d(t), then the CIR between Tx antenna m and
Rx antenna n can be expressed as

hm,n(t) = am,n(t) exp(−j2πdm,n(t)

λc
), (1)

where am,n(t) is the complex channel gain, λc denotes the
wavelength of the carrier. Due to the modulation of the vital
signs, i.e., respiration and heartbeat, dm,n(t) appears to be
a combination of two periodic signals, which can be further
expressed as

dm,n(t) = d0(m,n) + sr(t) + sh(t), (2)

where sr(t) and sh(t) denote the distance change due to
respiration and heartbeat, and d0(m,n) denotes the constant
travelling distance. Considering the fast-time resolution of
the device, the reflected signal will fall into the l-th tap if
we have d0(m,n) = lTsc + ∆d(m,n), where Ts = 1/B
denotes the fast time resolution and B stands for the system
bandwidth. ∆d(m,n) denotes the distance residual and we
have ∆d(m,n) = d0(m,n)− lTsc < Tsc.
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Fig. 2: Coordinate system and typical signal of vital sign

If the reflected signal falls into the l-th tap of the measured
CIR with residual ∆d(m,n), the CIR at tap l, denoting as
hl(t) = [h1,1(t), h1,2(t), . . . , hM,N (t)]T , can be expressed as

hl(t) = a(t)� exp(−j2π∆d + sr(t) + sh(t)

λc
)

= ã exp(−j2π sr(t) + sh(t)

λc
),

(3)

where ∆d = [∆d(1, 1),∆d(1, 2), . . . ,∆d(M,N)]T , a(t) =
[a1,1(t), a1,2(t), . . . , aM,N (t)]T , and � denotes elementwise
product. We assume a(t) is time-invariant due to the tiny
movement of the subject, and the common phase shift is
absorbed in the term ã.

To further get the CIR at a specific angle, ViMo performs
conventional beamforming at both Tx and Rx. In specific, at
Tx side, to create a beam toward to angle (θ, φ), we perform
conventional beamforming, where the coefficient of the m-th
antenna of steering vector sTx is

sTx,m(θ, φ) = exp (−j2πdm,x cos θ sinφ+ dm,y cos θ cosφ

λc
).

(4)
dm,y and dm,z are the horizontal and vertical distance between
antenna m and the origin, as shown in Fig. 2 (a). Similarly,
at Rx side, to detect the angle of arrival (AoA) of the signal,
we use the conventional beamforming, where the coefficient
of the n-th antenna of steering vector sRx is

sRx,n(θ, φ) = exp (−j2πdn,x cos θ sinφ+ dn,y cos θ cosφ

λc
).

(5)
dn,y and dn,z are the horizontal and vertical distance between
antenna n and the origin. The CIR after performing beam-
forming can be expressed as

hθ,φ,l(t) = sH(θ, φ)hl(t) + ε(t), (6)

where ε(t) stands for additive white Gaussian noise which
is independent and identically distributed (I.I.D) for different
links. sH(θ, φ) is the steering vector pointing to the direction
(θ, φ) , which can be expressed as the vector form of the
Kronecker product between sRx and sTx, i.e.,

s(θ, φ) = Vec [sTx(θ, φ)⊗ sRx(θ, φ)]. (7)

It is apparent that the phase of the CIR measurement
changes periodically in slow time due to the periodic motions
of respiration and heartbeat, as shown in (3). Fig. 2 (b) shows
a typical phase signal containing vital signs collected by our
system.
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(a) Example of the frame structure (b) Example of the cell

Fig. 3: Example of the frame structure and the cell

In ViMo, we perform on-chip beamforming at both Tx
and Rx. The frame structure is shown in Fig. 3 (a). In
each burst, Tx will send a series of known pulses toward to
different sectors (θ, φ), and Rx will also perform beamforming
with corresponding steering vector towards to angle (θ, φ).
Therefore, the space can be separated as cells, as shown in
Fig. 3 (b). The volume of each cell can be approximated as
∆V ≈ ∆r ∗ (l∆r∆θ)∗ (l∆r sin θ∆φ), where ∆r = c

2B is the
range resolution of the device, and l is the tap index. ∆θ and
∆φ denote the elevation and azimuth separation respectively.
Thus, in each burst, we will get information of all cells.
Considering the volume of each cell and the size of the human
subject, each cell is assumed to only contain one person1.

IV. TARGET DETECTION

Since various indoor objects (e.g., wall, desk, etc.) reflect
the EM wave, before starting monitoring vital signs, we first
need to detect human subjects in the vicinity of the Tx and the
Rx. Note that the human subjects may have body motion and
thus will change his/her location in the long run, ViMo divides
the duration of measurements into multiple blocks, where each
block consists CIR measurements of W seconds. Two adjacent
blocks overlap by W −Ws seconds, where Ws is the sliding
window length.

A. Detecting Reflecting Objects

Since the RF signal at 60GHz attenuates severely with
distance [40], the reflected energy from the same object varies
with distance. To locate the human subject, we first need to
identify which spatial cell has reflecting objects.

The CIR measurement for the case when there is no
reflecting object and the case when there is a static reflecting
object at cell (θ, φ, l) can be expressed as

hempty
θ,φ,l (t) = ε(t), (8)

and

hstatic
θ,φ,l (t) = sH(θ, φ)[a� exp(−j2πd0

λc
)] + ε(t), (9)

1Note that, in 60GHz WiFi, the multipath effect is not as severe as in
commercial 5GHz WiFi. Due to the large bandwidth, each range tap corre-
sponds to probably 1-2 multipaths [41]. By further utilizing the beamforming
on both Tx and Rx, the angular separation of each cell is small enough such
that the multipaths corresponding to each cell, if any, are similar. Therefore,
multipath signals should exhibit similar periodicity in the same cell. For vital
sign monitoring, what we value most is the periodicity of the vital signs. Thus,
even there are multipaths in the same cell, they will not affect the estimation
performance.

(a)  1D CA-CFAR

(b)  2D CA-CFAR
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Fig. 4: CFAR window.

respectively. It is obvious that the power response when there
is a reflecting object is much larger than the empty tap. How-
ever, it is impossible to find a universal predefined threshold
for target detection. According to the propagation laws of
EM wave, for the same reflecting object, a shorter distance
corresponds to a larger reflecting energy. Furthermore, due to
the automatic gain control (AGC) module, the amplitude of
the CIRs will change for different measurements.

In order to find the adaptive power threshold for each block,
ViMo utilizes constant false alarm rate (CFAR) algorithm [42]
for target detection. The power of the noise level for the
cell under test (CUT) is estimated by averaging the power
of neighboring cells. Furthermore, the guard cell is used to
avoid corrupting estimates with power from the CUT itself.

In specific, for each block, the input of CFAR detector is
the time-averaging amplitude of all the CIR measurements,
i.e., h(θ, φ, l) = 1

WFs

∑
t |hθ,φ,l(t)|, where Fs is the sampling

rate. Considering the attenuation property of EM wave, where
the reflected signal strength at a different distance of the same
object will be different, to determine the range of the reflecting
objects, 1D-CFAR is adopted, as shown in Fig. 4 (a). For each
sector (θ, φ), ViMo convolves CIR measurements hθ,φ(l) with
the CFAR window to get the estimation of noise level n̂θ,φ(l).
A scaling factor α is applied to scale the estimated noise level.
The detection threshold is thus set to be αn̂θ,φ(l), and the taps
with reflecting objects should be those whose amplitude are
above the detection threshold, as shown in Fig. 5. To determine
the noise level at the direction (θ, φ), we further employ 2D-
CFAR for tap l, where the noise level n̂l(θ, φ) is estimated
by convolving CIR measurements hl(θ, φ) with the 2D-CFAR
window as shown in Fig. 4 (b). Scaling factor β is applied to
scale the estimated noise level. The reflecting object should be
in the cell (l, θ, φ) whose CIR measurement h(θ, φ, l) is above
detection threshold αn̂θ,φ(l) and βn̂l(θ, φ) simultaneously.
Here, we define the indicator of reflecting object 1R(l, θ, φ)
as

1R(l, θ, φ) = 1{|h(θ, φ, l)| > max(αn̂θ,φ(l), βn̂l(θ, φ))},
(10)

where 1{·} is the indicator function. Fig. 7 shows the cells
with reflecting objects in blue circles.
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B. Motion Detector

Although the CFAR detector can identify which cell is
occupied by reflecting objects, it cannot differentiate whether
the reflection comes from human or not. Note that human
subjects always accompany motion (either from breathing
or RBM), which is a specific characteristic different from
static objects, we can design a motion detector to identify
human subjects. Furthermore, most of the wireless vital sign
monitoring systems assume there is only one human subject
and no RBM during the measurement, and thus the procedure
of finding the human subjects is omitted [30]–[36], which is
neither natural nor realistic for practical deployment. So in
this part, we design a motion detector, which enables ViMo
to identify static reflecting objects, stationary human subjects
and human with RBM.

1) Static reflecting objects detection: Note that even sta-
tionary human subjects can introduce motion due to respiration
and heartbeat, and the distance change caused by respiration
can be discerned by phase change according to (3), we
calculate the variation of the phase of the CIR measurement
Vt(θ, φ, l) for each candidate cell (θ, φ, l) selected by reflecting
objects detector discussed in Section IV-A, which is defined
as

Vt(l, θ, φ) = Vart[∠hθ,φ,l(t)], (11)

where Vart[·] denotes the variance over parameter t and ∠
denotes the phase of a complex value. As shown in (9),
for a static reflecting objects, Vt(θ, φ, l) would be small,
but for the cell with human subjects, either respiration or
RBM will contribute a large Vt(θ, φ, l). ViMo utilizes a
predefined threshold ηmin to identify a static reflecting objects
if Vt(θ, φ, l) < ηmin

2. The phase signal and its variance are
shown in Fig. 6 (a) and Fig. 6 (d) respectively.

2) Stationary human subjects detection: For a stationary
human subject, periodic breathing signal can be observed in
the phase measurement according to (1), and Fig. 6 (b) gives
an example of a phase measurement with a stationary subject.
A bin with a stationary subject would have Vt(θ, φ, l) >
ηmin and a periodic phase signal whose frequency within
[bmin, bmax].

Note that spectrum analysis is widely used to evaluate
the period of respiration in previous works [44]. However,
the frequency resolution is ∆f = 60

W breath per minute
(BPM), where W is the window length in seconds. Therefore,

2The chest movement caused by tidal breathing ranges from 4-12mm [43].
Considering the wavelength of the 60GHz WiFi, the phase variance is 6.3-
56.8. In ViMo, we set ηmin = 3.

to get an acceptable estimation accuracy of the respiration
rate, the window length should be long enough, which will
cause a large delay. In our system, we adopt a statistical
approach by examining the auto-correlation function (ACF)
of the candidate CIR phase to evaluate the periodicity.

Here we denote the time-variant part of CIR phase mea-
surement as

y(t) = sr(t) + sh(t) + n(t), (12)

where n(t) is the random phase offset introduced by noise,
and is also a random variable independent in time instances.
Thus the ACF of y(t) can be calculated as

ρ(τ) =
Cov[y(t), y(t+ τ)]

Cov[y(t), y(t)]
, (13)

where τ denotes the time lag, and Cov[·] denotes the con-
variance operator. Assume that the distance change caused by
heartbeat sh(t) is uncorrelated with the distance change caused
by respiration sr(t), then ρ(τ) can be expressed as

ρ(τ) =
Var[sr(t)]

Var[y(t)]
ρr(τ)+

Var[sh(t)]

Var[y(t)]
ρh(τ)+

Var[n(t)]

Var[y(t)]
ρn(τ),

(14)
where Var[y(t)] = Var[sr(t)] + Var[sh(t)] + Var[n(t)].
ρr(τ), ρh(τ) and ρn(τ) denote the ACF of respiration, heart-
beat and noise respectively. Since we have Var[sr(t)] �
Var[sh(t)] and Var[sr(t)]� Var[n(t)], we have the approxi-
mation that ρ(τ) ≈ ρr(τ). The ACF will have a definite peak
at a certain delay which corresponds to the breathing cycle as
shown in Fig. 6 (e).

3) Motion detection: Random body motion (RBM) has
been one of the most difficult technical challenges to wireless
vital sign monitoring. Compared with the millimeter-scale
chest movement caused by heartbeats, the scale of RBM can
be tens of centimeters. The time-variant part of CIR phase
measurement with RBM can be modelled as

y(t) = sm(t) + sr(t) + sh(t) + n(t), (15)

where sm(t) is the distance change caused by motion.
Fig. 6 (c) shows an example of the phase measurement
with motion. Note that when the scale of RBM is much
larger than the respiration signal, the variation Var[sm(t)]�
Var[sr(t)] � Var[sh(t)], and thus Vt(l, θ, φ) > ηmax, where
ηmax is a predefined threshold. When the subjects have mod-
erate RBM, the variance of phase may be within the threshold,
however, since RBM lacks periodicity in most case, we cannot
observe a peak in ρ(τ) as the stationary case as shown in
Fig 6 (f). Therefore, we have the motion indicator 1M (·)
defined as

1M (θ, φ, l) = 1(Vt(θ, φ, l) > ηmax ∪ ρ(τb) < Γ), (16)

where 1(·) is the indicator function, τb is the first peak of ACF
ρ(τ), and Γ is a predefined threshold.

C. Cell Merging/Clustering

Due to the fact that more than one cells have the RF signals
reflected off a single human subject, a target clustering method
should be employed before determining the target number
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RBM subject, (d) shows the phase variance of signals in (a)-(c), (e) and (f) show the ACF of (b) and (c) respectively. The
reference RR of the stationary human subject is 16BPM.

Fig. 7: Example of cell merging.

and vital sign monitoring. Considering the size of the human
body, we can merge them into a cluster if the spacial distance
between these cells is within the threshold dmin. In ViMo
system, we set the dmin as 0.8 m considering the typical body
volume of human subjects. The cluster center of stationary
cells is the cell with the largest ACF peak, corresponding
to the cell with the human chest. The center of the RBM
cells for each cluster is the cell with the largest Vt(θ, φ, l),
corresponding to the cell with the largest body motion. Note
that even for a stationary person, he/she can have body motion
from the body part away from the chest. So when the distance
between stationary cells and RBM cells is smaller than the
threshold dmin, then these cells belong to the same person,
and the center of the cluster should be the representative of
stationary cells. The number of people is estimated by the
number of clusters, where the location of each person is the
center of its corresponding cluster.

Fig. 7 shows an exemplar for cells merging, where the
ground truth is that a human subject sits at 1 m away from
the device in a typical indoor office. The reflecting objects
detected by the CFAR detector is shown in blue circles.
The motion detector further differentiates cells with stationary
subjects and RBM, shown as red diamonds and green squares
respectively. The representative of the target is shown in solid
black diamond.

V. HEART RATE ESTIMATION

In ViMo, we enable the heart rate estimation module
once a stationary subject has been detected. Since we check
periodicity using ACF to determine whether the cell contains
a stationary respiration signal as shown in Section IV-B2, we
can easily determine the breathing cycle by finding the peak
location τr of ρ(τ), and the breathing rate should be

fr =
60

τr
(17)

breath per minute (BPM).
Note that heartbeats can introduce minute movements of

the chest [19], which can be detected as small peaks in the
unwrapped phase as shown in Fig. 8 (a). Past works [37] [39]
[45] try to directly utilize frequency analysis and bandpass
filter (BPF) to estimate the heart rate. However, due to the
harmonics introduced by respiration, it is easy to pick up
the wrong peak for estimation as shown in the blue line in
Fig. 8 (c). Thus, in order to get a higher estimation accuracy,
we first eliminate breathing signal before heart rate estimation.

A. Breathing Interference Elimination

Eliminating the breathing signal can improve the signal-to-
interference-plus-noise ratio (SINR) of the heartbeat signal,
and thus improve the estimation accuracy. The polynomial
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density (PSD) of original phase and residual signal.

fitting has been used [30] [31] [35] to remove respiration mo-
tion. However, one of the main drawbacks of the polynomial
fitting is the order selection. In previous works, the order is
carefully selected by empirical experience, but under-fitting
or over-fitting can be easily triggered when the experimental
setting is changed (e.g., change of sampling rate or window
length). Besides, the elimination effect is also related to the
breathing rate. In other words, in order to achieve a similar
elimination effect, the polynomial order should adapt to the
user’s breathing rate, which is not practical for robust daily
deployment. To avoid this effect, ViMo adopts smoothing
spline to estimate the breathing signal.

Let {ti, y(ti) : i = t0, t0 + Ts, · · · , t0 + W} to be a set
of observation in the current window, where Ts = 1

Fs
is the

time interval between two adjacent samples, t0 is the initial
time of the observation window, and W is the window length.
Compared to the heartbeat signal, the respiration signals have
larger distance change and lower frequency, thus, the estimate
of the breathing signal sr(t) should be the solution of

min
f̂

t0+W∑
i=t0

{y(ti)− f̂(ti)}2 + λ

∫
f̂

′′
(t)2 dt, (18)

where λ ≥ 0 is a smoothing parameter. The second term
evaluates the smoothness of a function. The smoothing pa-
rameter controls the trade-off between fidelity to the data and
smoothness of the function estimate. f̂ is the estimate of sr(t),
defined as

f̂(t) =

t0+W∑
t=t0

f̂(ti)fi(t), (19)

where fi(t) are a set of spline basis function. In this work, we
use B-spline as the spline basis, and the detail of the definition
can be referred to [46].

To get the optimum solution of (18), we first define the
vector m̂ = [f̂(t0), · · · , f̂(t0 + W )]>, and the roughness
penalty has the form∫

f̂
′′
(t)2 dt = m̂>Am̂, (20)

where the elements of A are
∫
f

′′

i (t)f
′′

j (t) dt. Therefore, the
penalized sum-of-squares can be written as

min
m̂
{y − m̂}>{y − m̂}+ λm̂>Am̂, (21)

Fig. 9: Spectrogram of residual signal.

where y = (y(t0), · · · y(t0+W ))>. The minimizer of problem
(21) is thus

m̂∗ = (I + λA)−1y. (22)

The heartbeat after elimination of the breathing signal is thus

ŝh(t) = y(t)− m̂∗>f(t), (23)

where f(t) is the vector form of spline basis functions.
The dashed line in Fig. 8 (a) shows the estimation of

the breathing signal. After breathing signal elimination, the
spectrum of the residual signal after applying a band-pass filter
(BPF) with passing band [hmin hmax] is shown in the orange
dashed line in Fig. 8 (c). The spectrum of the phase without
eliminating respiration signal using the same BPF is shown in
the blue solid line. It is obvious that the signal-to-interference-
plus-noise ratio (SINR) of the heartbeat signal after breathing
elimination is boosted. Specifically, the SINR is boosted from
1.65 dB to 5.65 dB by eliminating the respiration signal 3.

B. Heart Rate Estimation using Spectrogram

Breathing signal elimination can enhance the SINR of the
heartbeat signal, and thus, increase the accuracy of heart rate
estimation. However, the random measurement noises can still
corrupt the estimation at some time instances. To further

3The SINR is calculated from the frequency domain. In specific, the
power of the heartbeat signal can be obtained from the power spectrum,
i.e., the power at the frequency point w.r.t. the true heart rate. The power
of interference and noise is the summation of the power at the rest of the
frequency points.
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increase the estimation accuracy, in ViMo, we leverage the
stationary property of heart rate and utilize the diversity in
both frequency and time domains for reliable estimation.

Note that the heart rate can smoothly change over time, we
model the heart rate as a Markov process, where the variation
of heart rate between two adjacent time bins follows a normal
distribution N (0, σ2), and the probability density function
(PDF) is denoted as p(f). After breathing signal elimination,
we perform Fast Fourier Transform (FFT) on the residual and
concatenate the PSD of each window to get a spectrogram as
shown in Fig. 9.

Since the operation of FFT automatically discretizes the
continuous frequency in the range of [hmin, hmax] 4 into |Q|
frequency components, where |Q| means the cardinality of set
Q, the heart rate can be modelled as a Markov chain, and the
transition probability matrix is denoted as P ∈ R|Q| × R|Q|,
which is defined as

P(q, q
′
) = P(g(n) = q

′
|g(n− 1) = q)

=

∫ (q
′
−q+ 1

2 )∗∆f

(q′−q− 1
2 )∗∆f

p(f)df,
(24)

where ∀q, q′ ∈ Q. Here, g : [1, N ] −→ Q is a mapping
indicating the frequency component at the given time, and
N is the total time instances of a given spectrogram.

In principle, the heartbeat signal is more periodic than
noise and other motion interference. Thus, it is more likely
to be observed as peaks in most of the time. Moreover,
considering that one’s heart rate will not fluctuate a lot within
a short period, estimations of heart rates should form a trace
that achieves a good balance between frequency power and
temporal smoothness.

The most probable heart rate trace can be found by solving

g∗ = arg max
g

E(g)− κC(g), (25)

where κ is a regularization factor. g is denoted as a trace,
where

g = (n, g(n))
N
n=1. (26)

E(g) is the power of trace g , defined as

E(g) =
N∑
n=1

E(n, g(n)), (27)

where E(n, q) denotes the energy at time bin n and frequency
component q. The smoothness of the trace can be evaluated
by a cost function C(g), defined as

C(g) , − log P(g(1))−
N∑
n=2

log P(g(n− 1), g(n)), (28)

where the frequency transition probability P(g(n − 1), g(n))
can be calculated by (24). Without loss of generality, we
assume a uniform prior distribution, i.e., P(g(1)) = 1

|Q| .

4In ViMo, we set hmin and hmax as 60BPM and 120BPM respectively.

This problem can be solved by dynamic programming [47].
For clarity, we first define the score at bin (n, q) as the
maximum achievable regularized energy, i.e.,

S(n, q) = E(n, q) + max
∀q′∈Q

{S(n− 1, q
′
) + λ log P(q

′
, q)},

n = 2, 3.., N, ∀ q, q
′
∈ Q,

(29)
where S(1, q) = E(1, q) + λ log P(g(1) = q). Furthermore,
since S(n, q) consider both the smoothness and regularized
energy of the previous trace, the process of calculating the
score also determines the optimal trace passing through bin
(n, q). The entire optimal heart rate trace can be found by
backtracking the bins (N, g∗(N)) that contribute to the maxi-
mum score of the last timestamp. For the rest of the heart rate
trace in the observation window, i.e., ∀ n = N−1, N−2, ..., 1,
we have

g∗(n) = arg max
∀q∈Q

S(i, q) + λ log P(q, g∗(n+ 1)). (30)

The backtracking procedure in (30) gives the optimal trace
g∗ for a given spectrum, which is the optimal solution for
(25). The result of heart rate trace estimation is shown as
the black line in Fig. 9, where the reference measured by a
gold standard electrocardiogram (ECG) sensor [48] is marked
as the white line. The estimation result of directly using the
location of the highest peak of the spectrum as the heart rate
estimation is shown as the blue dashed line. We can see that
when the noise is too large (e.g., at time instance t = 32
s), the estimation without dynamic programming will locate
at the wrong peak, resulting in a large estimation error. By
using dynamic programming, the maximum estimation error
decreases from 5BPM to 3BPM, as shown in Fig. 9.

VI. EXPERIMENT EVALUATION

In this section, we evaluate ViMo in practical settings using
a commodity 802.11ad chipset in a typical office of size
3.5 m × 3.2 m as shown in Fig. 10. We embed ViMo in
a commodity off-the-shelf 60GHz WiFi [21] as shown in
Fig. 10 (a). Specifically, the chipset we used for ViMo has
32 antennas assembled in a 6×6 layout with a form factor of
1.8 cm× 1.8 cm for both the transmitter (Tx) and the receiver
(Rx). The chipset operates at 60GHz center frequency with
3.52GHz bandwidth, providing a range resolution of 4.26 cm.
To extract channel impulse response (CIR), the Tx transmits a
known pulse composed of a complementary Golay sequence.
A Golay correlator is implemented in the Rx hardware and
the correlation result corresponds to the CIR. We enroll 8
participants (4 male and 4 female) aging from 22 to 35 for
testing. The ground truth is provided by a commercial ECG
sensor with a chest strap [48]. The sampling rate of ViMo is
20Hz.

To further evaluate our system, we compare it with the
mmVital [39], which is the state-of-art wireless vital sign mon-
itoring system using impulse-based mmWave radio. mmVital
leverages the RSS from a pair of horn antenna and finds the
highest magnitude peak as well as its adjacent bins in the
frequency domain to form a custom narrow BPF, and then
counts peaks of the time-domain filtered signal to determine
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(a) Device (b) LOS setting (c) NLOS setting

Fig. 10: Experiment setup

the breathing rates as well as heart rate. In order to make
a fair comparison, same as ViMo, phases of CIRs from the
detected cells are used as the input of mmVital algorithm,
rather than the coarse information of RSS. To estimate both
respiration and heart rate, the adaptive narrow BPF and IFFT
are implemented as illustrated in mmVital [39]. The window
length for both mmVital and ViMo are set to be 60 seconds,
and systems give output every second. Note that mmVital [39]
estimates vital signs according to the number of peaks in a time
window (i.e., the estimation is an integer), the resolution of its
breathing rate as well as heart rate estimation is 1 beat/breath
per minute (BPM).

A. Overall performance

We first report the overall performance of ViMo in the
measurement of respiration rate (RR) and heart rate (HR). The
accuracy is calculated over 17 experimental runs of 3 minutes
for all 8 participants. During the experiment, participants wear
casual clothes, such as sweaters and shirts, sit in front of
the device and breathe normally. Various factors including
user and device placement diversity (e.g., distance, orientation,
incident angle and blockage), motion interference and multiple
users’ position are considered.

The detection rate of the system is 97.86% and the overall
median error of RR and HR evaluated by ViMo is 0.19
BPM and 0.92 BPM respectively. mmVital achieves similar
performance w.r.t. RR, but its median error of HR is 1.6
BPM, 73.91% worse than ViMo. We further compare the
performance of ViMo with Vital-Radio [37], which is the
representative multi-user vital sign monitoring system build
upon FMCW radar. Vital-Radio achieves 98.5% median ac-
curacy of HR estimation (0.95 BPM) when the person is 1
m away from the device, whereas, the median error of HR
estimation for ViMo is 0.58 BPM. Note that although the
SNR of our device is lower than FMCW radar, ViMo still
achieves better performance. The advantage of our system
benefits from the breathing signal elimination module and
dynamic programming (DP) algorithm when estimating the
HR, which can increase the SINR of the heartbeat signal.

Moreover, experimental results show that ViMo can effec-
tively detect stationary/non-stationary state of human subjects,
and can make accurate estimates of both RR and HR when
slight user motion incurs (e.g., shaking head). Comparing with
mmVital, which does not take users’ motion into considera-
tion, ViMo makes an important improvement towards practical
deployment. The details will be discussed in the following
sections.

B. Impact of distance

In this section, we investigate the effect of the distance
between the device and human subject on the estimation
accuracy. Participants sit at different distances facing the
device as shown in Fig. 11 (a). The empirical cumulative
distribution function (CDF) of the absolute error of RR and HR
estimation are shown in Fig. 11 (b) and Fig. 11 (c) respectively,
where the performance of ViMo and mmVital are shown in
solid lines and dash lines respectively. To account for the mis-
detection, we set the estimation to be 0 BPM when the target
is missed.

As expected, the performance degrades with distance due to
the signal-to-noise ratio (SNR) degradation. The median error
for RR of ViMo is within 0.15 BPM when the distance is
within 1.5 m and it increases to 0.22 BPM when the distance
increases to 2 m. For HR estimation, the median error of
ViMo increases from 0.42 BPM to 0.9 BPM when the distance
increases from 0.5 m to 2 m. Furthermore, we can see that the
degradation of RR estimation is less than the HR estimation
due to the higher SNR of the breathing signal.

The CDF of RR estimation using mmVital algorithm is step-
wise since the resolution of both ground truth and estimation
is 1 BPM. It is obvious that both algorithms achieve similar
performance as for RR estimation, but ViMo achieves a higher
resolution. Moreover, for HR estimation, ViMo outperforms
mmVital for all the 4 settings, and the performance gap
becomes larger with the increment of distance. The main
reason is that the breathing signal elimination helps to improve
the SINR of the heartbeat signal as discussed in Section
V-A. Besides, DP algorithm in ViMo also leverages the time
diversity besides the frequency diversity to make estimations,
which can further alleviate the impact of the measurement
noises.

C. Impact of orientation

In this study, we investigate the impact of human orientation
on estimation accuracy. The orientation corresponds to the
closest part of the user w.r.t. the device as shown in Fig. 12 (a).
The distance from the user to the device is set to be 1 m.
Fig. 12 (b) and Fig. 12 (c) show the estimation performance
of RR and HR respectively.

It is shown that the “front” setting achieves the best perfor-
mance, whereas, the “back” setting has the worst performance,
for both RR and HR estimation. This result is due to the
distinct displacement of reflecting part caused by respiration
in different orientations. Since smaller displacement means
lower SNR of breathing signal, when the displacement is
too small, mis-detection occurs. The detection rate when the
subject sits facing the device is 100%, and it degrades to
99.06% and 99.37% when the left and right side of the chest
facing the device. The detection rate drops to 83.83% when
human subjects sit back to the device. It is worth noting that
even similar detection rates are achieved when participants
sitting at the left and right orientation, the HR estimation
performance is distinct, where the “left” setting outperforms
the “right” setting. This is due to the physiological structure
of human beings, where the vibration caused by the heartbeat
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Fig. 11: Experiment setup and result for the impact of distance.
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Fig. 12: Experiment setup and result for the impact of orientation.
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Fig. 13: Experiment setup and result for the impact of incident angle.

is larger on the left side of the chest. Similarly, ViMo has
equivalent performance in terms of RR estimation compared
with mmVital, however, it has much better performance of HR
estimation for all the 4 settings, as shown in Fig. 12 (c).

D. Impact of incident angle

In this part, we investigate the impact of the incident angle
on the estimation performance, where human subjects are
asked to sit at angles [0◦, 15◦, 30◦], and the distance between
human and device is 1 m, as shown in Fig. 13 (a). The CDF
of the absolute estimation error of RR and HR with different
incident angles are shown in Fig. 13 (b) and Fig. 13 (c)
respectively. We can see that for both RR and HR estimation,
the accuracy decreases with the increment of the incident
angle. The reason is that the reflection loss is dependent on
the incident angle, and increment in incident angle increases
the reflection loss, rendering lower SNR of the reflected signal.
However, since the SNR of the breathing signal is much higher
than the heartbeat signal, the performance degradation of RR

estimation is not as severe as HR estimation. Furthermore, we
can see that the performance of ViMo is much better compared
with mmVital in terms of HR estimation, especially in the case
of a large incident angle.

E. NLOS Case

The RR and HR estimation accuracy are evaluated for the
through-the-wall case, and the experiment setup is shown in
Fig. 14 (a). Participants are asked to sit on the other side of a
drywall, and the distance between the device and the human
subject is 1 m. The median error of RR estimation increases
from 0.15 BPM to 0.25 BPM due to the penetration loss, and
the median error of HR estimation increases from 0.6 BPM to
1.4 BPM, as shown in Fig. 14 (b) and Fig. 14 (c) respectively.

In order to further investigate the influence of blocking
material (corresponding to different penetration loss), we con-
duct a set of experiments, where different commonly used
materials are used to block the LOS path, as shown in Fig. 15.
Since the penetration loss is distinct for different material, the
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Fig. 14: Experiment setup and result for the impact of blockage.

Glass Cotton Wood White board

Fig. 15: Experiment setup with different blockage materials

Blocking
material

None
(LOS) Glass Cotton

pad
Wood
panel

White
board Drywall

Mean RR
error (BPM) 0.14 0.23 0.24 0.26 0.28 0.29

Mean HR
error (BPM) 1.29 2.66 3.45 4.82 4.85 5.95

TABLE I: Performance with different blockage materials

performance drop is different. The mean absolute error (MAE)
of RR and HR estimation is shown in Tab. I.

Besides, note that clothes can be considered as a cotton layer
between the human subject and the device, and the penetration
loss is related to the thickness of clothes. To investigate the
influence of the thickness of clothes, we conduct a similar
experiment as that in Fig. 15, where participants are asked to
wear T-shirts, sweaters and winter jackets during the exper-
iment. The median absolute error of RR and HR are shown
in Tab. II. We can see that the estimation accuracy decreases
with the increment of the thickness of clothes. However, for
the general indoor wearing (e.g., T-shirt and sweater), the
degradation can be negligible.

F. Impact of user heterogeneity

In this part, we investigate the impact of the user hetero-
geneity on the performance. The data of all the settings above
are used to get the performance of each user. The difference
in error distribution can be caused by various factors, such as
reflection loss and heartbeat strength, etc. Fig. 16 (a) gives the

Clothes Type T-shirt Sweater Winter jacket
Median absolute error

of RR (BPM) 0.125 0.142 0.164

Median absolute error
of HR (BPM) 0.5 0.58 1.13

TABLE II: Impact of thickness of clothes
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Fig. 16: Impact of user heterogeneity on estimation accuracy

Body state Stationary Shaking head
(left-right)

Moving body
(left-right) Speaking

Mean RR
error (BPM) 0.14 0.28 0.51 1.22

Mean HR
error (BPM) 1.29 4.16 3.06 6.31

TABLE III: Performance for different motion states

RR estimation performance, with the maximum median error
within 0.2 BPM for all participants. Fig. 16 (b) shows the error
distribution of absolute HR error of all 8 subjects, where all
of them have a median error within 2 BPM.

G. Impact of body movement
We evaluate the performance of ViMo when users have

different motion states. Participants are asked to shake head
(1 ∼ 3 cm) and move the body (4 ∼ 5 cm) every 20 seconds.
The distance from the device to the user is 1 m with incident
angle 0◦. We also evaluate the performance when users answer
phone with headset (continuously talking). The MAE of RR
and HR are shown in Tab. III. All the cases achieve more than
99.7% detection rate, where for the case of moving body, in
27% of the duration we detect large body motion, and thus
the vital signs estimation module will not be triggered. As for
the time that body motion is within the detection threshold
(a.k.a, stationary period), the vital sign estimation module is
triggered, and the mean HR error is 3.06 BPM for the case of
moving body (the relative error is 4%). However, for the case
when people are answering the phone, the chest will involve
RBM caused by speaking more frequently, resulting in the
worst performance for all the test cases.

H. Multi-user case
In this part, we first study the impact of the angular

separation between users, where two users sit at a distance
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device

100 cm
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Fig. 17: Experiment setup for the impact of separation angle

Separation
angle DI FI Med. error

of breathing
Med. error

of heart rate
30◦ 0.84 0 (1.14;0.15) (2;1)
45◦ 0.98 0 (0.22;0.14) (1;1)
60◦ 1 0 (0.21;0.14) (1;1)
75◦ 1 0 (0.21;0.12) (1;1)

TABLE IV: Performance for different separation angles

of 1 m away from the device with different separation angles
as shown in Fig. 17. We define the detection index (DI) of a
separation angle as the ratio between the number of samples
when the number of detected targets matches the ground truth
and the total number of samples. We also define the false-
alarm index (FI) of a separation angle as the ratio between
the number of samples when the number of detected targets is
larger than the ground truth and the total number of samples.
Tab. IV shows the median error of RR and HR estimation for
both users.

Compared to the single-user scenario, the performance
degrades at small separation angles (i.e., 30◦), but the perfor-
mance is similar to the single-user scenario if the separation
angels are large enough (i.e., larger than 45◦). This is because
when the distance of two targets is small enough, the distance
of the candidate cells with each user can be smaller than
the predefined threshold dmin. Thus, the two clusters will
be merged together and there will be only one representative
cell left, resulting in a mis-detection. Besides, the cells with
high SNR signals of one user can be merged with the other
user’s, therefore, the SNR of the representative cell for vital
signs estimation can drop, resulting in degradation of the
performance.

To further evaluate ViMo’s accuracy for multi-user vital sign
estimation, we perform controlled experiments, where we ask
3 users to sit in parallel as shown in Fig. 18. ViMo detects
the location of each target and simultaneously estimate their
vital signs. When mis-detection happens, we define the relative
error as 1 as before. Fig. 19 shows the mean relative accuracy
of RR and HR as well as the detection rate at each location.
We can see that for all the 3 locations, ViMo achieves the mean
accuracy of both RR and HR over 92.8%. As for the detection
rate, since the separations between the middle location and
the other two locations are not large enough, and the middle
location is more distant, the detection rate drops at the middle
location. However, the overall detection rate over time is still
above 92.7% during the testing.

Note that the system capacity is related to the range as well

device 100 cm

90
45

30o
45

100 cm

150 cm

left

right

middle

30o

30o

(a) Illustrate (b) Experiment setup

Fig. 18: Multi-user experiment setup
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Fig. 19: Multi-user accuracy and detection performance.

as the field-of-view (FoV) of the device, and the volume of
the human body. Besides, due to the large penetration loss of
human subjects, human subjects should not block each other.
The FoV of the device is 100◦, and the range of the human
subjects should be within 2.5 m to ensure acceptable SNR.
The human subject is simulated as a circle with r = 0.4 m.
The location of human subjects when achieving the maximum
capacity is shown in black circles in Fig. 20. Note that
the human subject with a shorter distance (e.g. blue circle)
occupies a larger effective space (e.g., the space between the
dashed blue lines), thus, to achieve maximum support, human
subjects should locate at the boundary of the coverage area
as shown in black circles in Fig. 20. We can see that the
system can support at most 5 users at the same time. However,
considering the reflection loss increases with the incident angle
as shown in Section VI-D, we recommend 3 users setup as
shown in Fig. 18.

VII. CONCLUSION

This paper presents ViMo, a multi-person Vital sign
Monitoring system using a single commercial 802.11ad de-
vice. We devise a multi-object stationary/non-stationary detec-

Fig. 20: Human location for maximum support
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tion algorithm to locate and count human targets without any
prior calibration. In addition to the instantaneous estimating
breathing rates using ACF with high accuracy, we further
design a robust heart rate estimator, which eliminates the
interference of the breathing signal and then estimates the
heart rate leveraging both the time and frequency diversity.
We evaluate the performance of ViMo by various settings,
including NLOS and motion artifacts, the most challenging
scenarios for wireless vital signs monitoring. Experiment
results show that ViMo can accurately monitor vital signs, with
a median error of 0.19 BPM and 0.92 BPM, respectively, for
RR and HR estimation.
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