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Abstract— In this paper, we show the existence of human
radio biometrics and present a human identification system
that can discriminate individuals even through the walls in a
non-line-of-sight condition. Using commodity Wi-Fi devices, the
proposed system captures the channel state information (CSI)
and extracts human radio biometric information from Wi-Fi
signals using the time-reversal (TR) technique. By leveraging
the fact that broadband wireless CSI has a significant number of
multipaths, which can be altered by human body interferences,
the proposed system can recognize individuals in the TR domain
without line-of-sight radio. We built a prototype of the TR human
identification system using standard Wi-Fi chipsets with 3 × 3
multi-in multi-out (MIMO) transmission. The performance of
the proposed system is evaluated and validated through multiple
experiments. In general, the TR human identification system
achieves an accuracy of 98.78% for identifying about a dozen of
individuals using a single transmitter and receiver pair. Thanks
to the ubiquitousness of Wi-Fi, the proposed system shows
the promise for future low-cost low-complexity reliable human
identification applications based on radio biometrics.

Index Terms— Human radio biometrics, time-reversal (TR),
through-the-wall human identification, radio shot, broadband
wireless.

I. INTRODUCTION

NOWADAYS, the capability of performing reliable human
identification and recognition has become a crucial

requirement in many applications, such as forensics, airport
custom check, and bank securities. Current state-of-the-art
techniques for human identification rely on the discriminative
physiological and behavioral characteristics of human, know
as biometrics.

Biometric recognition refers to the automated recognition
of individuals based on their human biological and behav-
ioral characteristics [1], [2]. The well-known biometrics for
human recognition include fingerprint, face, iris, and voice.
Since biometrics are inherent and distinctive to an individual,
biometric traits are widely used in surveillance systems for
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human identification. Moreover, due to the difficulty for bio-
metrics counterfeit, techniques based on the biometrics have
clear-cut advantages over traditional security methods such as
passwords and signatures in countering the growing security
threats and in facilitating personalization and convenience.
Even though the current biometrics systems are accurate and
can be applied in all environments, all of them require special
devices that capture human biometric traits in an extremely
line-of-sight (LOS) environment, i.e., the subject should make
contact with the devices. In this work, a novel concept of radio
biometrics is proposed, and accurate human identifications
and verifications can be implemented with commercial WiFi
devices in a through-the-wall setting.

In [3], researchers studied the relationship between the
electromagnetic (EM) absorption of human bodies and the
human physical characteristics in the carrier frequency range
of 1 to 15 GHz, in which the body’s surface area is found
to have a dominant effect on absorption. Moreover, the inter-
action of EM waves with biological tissue was studied [4]
and the dielectric properties of biological tissues were mea-
sured in [5] and [6]. According to the literature, the wireless
propagation around the human body highly depends on the
physical characteristic (e.g., height and mass), the total body
water volume, the skin condition and other biological tissues.
The human-affected wireless signal under attenuations and
alterations, containing the identity information, is defined
as human radio biometrics. Considering the combination of
all the physical characteristics and other biological features
that affect the propagation of EM waves around the human
body and how variable those features can be among different
individuals, the chance for two humans to have the identical
combinations is significantly small, no matter how similar
those features are. Even if two have the same height, weight,
clothing and gender, other inherent biological characteristics
may be different, resulting in different wireless propagation
patterns round the human body. Take the DNA sequence as
an example. Even though all humans are 99.5% similar to any
other humans, no two humans are genetically identical which
is the key to techniques such as genetic fingerprinting [7].
Since the probability of two individuals to have exactly
the same physical and biological characteristics is extremely
small, the multipath profiles after human interferences are
therefore different among different persons. Consequently,
human radio biometrics, which record how the wireless sig-
nal interacts with a human body, are altered accordingly to
individuals’ biological and physical characteristics and can be
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viewed as unique among different individuals. One example is
that the face recognition has been implemented for many years
to distinguish from and recognize different people, thanks to
the fact that different individuals have different facial features.
Human radio biometrics, which record how RF signals respond
to the entire body of a human including the face, should
contain more information than a face, and thus become more
distinct among humans. In this work, the proposed TR human
identification system utilizes not only the face, but also the
entire individual physical characteristic profiles.

In the recent past, a number of attempts have been made to
detect and recognize indoor human activities through wireless
indoor sensing. Systems have been built to detect indoor
human motions based on the variations of CSI [8]–[10]. In [8],
the first two largest eigenvalues of the CSI correlation matrix
were viewed as features to determine whether the environment
is static or dynamic. The standard deviation of the CSI samples
from a 3 × 3 MIMO system combined were fed into SVM
to detect human activities such as falling [11]. The received
signal strength (RSS) is an indicator for the fluctuation of
the wireless channel quality, and thus has been applied to
recognize indoor human activities [12]–[15]. Moreover, track-
ing and recording vital signals using wireless signal has been
widely studied [16]–[19]. Liu et al. [16] proposed a system to
track human breathing and heartbeat rate using off-the-shelf
WiFi signals. Vital-Radio system was proposed in [18] that
monitors vital signs using radar technique to separate different
reflections. On the other hand, the recognition of gestures
and small hand motions has been implemented using wireless
signals [20]–[23]. Moreover, by sending a specially designed
frequency modulated carrier wave (FMCW) which sweeps
over different carrier frequencies, Adib and Katabi [24],
Adib et al. [25]–[27] proposed a new radar-based system
to keep track of the different time-of-flights (ToFs) of the
reflected signals . However, as focusing on differentiating
between different human movements, e. g., standing, walking,
falling down and small gestures, none of them have addressed
the problem of distinguishing one individual from others, who
hold the same posture and stand at the same location, by only
using WiFi signals in a through-the-wall setting. Recently,
in [27], a RF-Capture system was presented to image human
body contour through the wall. Owing to the distinctiveness of
silhouettes, it can differentiate between different individuals by
applying image processing and machine learning techniques to
the captured human figures. However, to get a high-resolution
ToF profile, it requires special devices that can scan over
1 GHz spectrum. Moreover, the computational complexity
introduced by the necessary image processing and machine
learning algorithms is high. On the contrary, this work pro-
poses a novel human identification system that aims at distin-
guishing and identifying different individuals accurately with
commercial MIMO WiFi devices of a 40 MHz transmission
bandwidth. The proposed system supports simple and efficient
algorithms to achieve a high-accuracy performance.

To achieve this goal, we utilize the time-reversal (TR)
technique to capture the differences between human radio
biometrics and to reduce the dimension of features. In an
indoor environment, there exists a large amount of reflectors

Fig. 1. TR-based wireless transmission.

and scatterers. When a wireless signal emitted from the
transmitter encounters them, it will travel along different
propagation paths with different distances and suffer different
fading effects. Consequently, at the receiver the received
signal is a combination of the copies of the same transmitted
signal through different paths and delays. This phenomenon is
well known as the multipath propagation. TR technique takes
advantage of the multipath propagation to produce a spatial-
temporal resonance effect. A typical TR wireless communica-
tion system is shown in Fig. 1 [28]. Suppose the transceiver A
gets an estimated multipath CSI, h(t), for the channel between
A and B, the corresponding TR signature is obtained as g(t) =
h∗(−t). As the transceiver A transmits back g(t) over the air,
a spatial-temporal resonance is produced at transceiver B. The
TR spatial-temporal resonance is generated by fully collecting
the energy of the multipath channel and concentrating into a
particular location. In physics, the spatial-temporal resonance,
which is commonly known as the focusing effect, is the result
of a resonance of electromagnetic (EM) field, in response to
the environment. This resonance is sensitive to the environ-
ment changes, which can be used for capturing the difference
in the multipath CSI.

In [29], the concept of TR spatial-temporal resonance has
been established as theory and validated through experiments.
The TR technique relies on two verified assumptions of
channel reciprocity [30], [31] and channel stationarity [28].
Channel reciprocity demonstrates the phenomenon that the
CSI of both forward and backward links is highly corre-
lated, whereas channel stationarity establishes that the CSI
remains highly correlated during a certain period. A novel
TR-based indoor localization approach was first proposed and
a prototype was implemented under a 125 MHz bandwidth,
achieving a centimeter accuracy even with a single AP work-
ing in non-line-of-sight (NLOS) environments [31]. Recently,
in [32], a TR indoor locationing system on a WiFi platform
was proposed and built, which utilizes the location-specific
fingerprints generated by concatenating the CSI with a total
equivalent bandwidth of 1 GHz.

In this work, we present a TR human identification system
to identify individuals through the walls (i.e., in the absence of
any LOS path), based on the human radio biometrics in WiFi
signals. To the best of our knowledge, this is the first effort
to show and verify the existence of human radio biometrics,
which can be found embedding in the wireless channel state
information (CSI). Moreover, we propose a human recognition
system that extracts the unique radio biometrics as features
from the CSI for differentiating between people through the
wall. We define the term radio shot as the procedure to take



XU et al.: RADIO BIOMETRICS: HUMAN RECOGNITION THROUGH A WALL 1143

and record human radio biometrics via WiFi signals. The
system consists of two main algorithmic parts: the refinement
of human radio biometrics and the TR-based identification.
The refinement is designed to remove the common CSI
components coming from static objects in the environment
and the similarity in the radio biometrics of all participants,
and to extract the CSI components that contains distinctive
human radio biometrics. In the TR-based identification part,
the extracted human radio biometric information is mapped
into the TR space and the similarity between different bio-
metrics is quantified and evaluated using the time-reversal
resonance strength (TRRS). The performance of the proposed
identification system is evaluated and the accuracy can achieve
a 98.78% identification rate when distinguishing between 11
individuals. The detailed study of performance is in Section V.

The major contributions of this work are summarized
below.

• We introduce for the first time the concept of human
radio biometrics, which account for the wireless signal
attenuation and alteration brought by human. Through
experiments, its existence has been verified and its ability
for human identification has been illustrated. The proce-
dure to collect human radio biometrics is named as radio
shot.

• Due to the fact that the dominant component in the CSI
comes from the static environment rather than human
body, the human radio biometrics are embedded and
buried in the multipath CSI. To boost the identification
performance, we design novel algorithms for extracting
individual human radio biometrics from the wireless
channel information.

• Radio biometrics extracted from the raw CSI are
complex-valued and high-dimensional, which compli-
cates the classification problem. To address this problem,
we apply the TR technique to fuse and compress the
human radio biometrics and to differentiate between radio
biometrics of different people, by using the strength of
the spatial-temporal resonances.

• For performance evaluation, we build the first prototype
that implements the TR human identification system
using off-the-shelf WiFi chipsets, and test in an indoor
office environment during normal working hours with an
identification rate as 98.78% in identifying about a dozen
of individuals.

Our work demonstrates the potential of using commercial
WiFi signals to capture human radio biometrics for individual
identifications.

II. TR HUMAN IDENTIFICATION

The proposed TR human identification system is capable
of capturing human biometrics and identifying different indi-
viduals through the walls. The human radio biometrics that
are embedded in the CSI contain the WiFi reflections and
scattering by human body in the indoor environment. As a
result, the human radio biometrics, owing to the differences
in human biological metrics, are different among different
individuals. Moreover, by leveraging the TR technique, in the
proposed system, the human radio biometrics can be easily

Fig. 2. Mapping between the CSI logical space and the TR space.

extracted from the CSI for distinguishing between individuals.
This procedure is called radio shot.

A. Time-Reversal Space

During the wireless transmission, signals encounter different
objects in the environment, and the corresponding propagation
path and characteristics change accordingly before arriving at
the receiver. As demonstrated in Fig. 2, each dot in the channel
state information (CSI) logical space represents a snapshot of
the indoor environment, e.g., an indoor location and an indoor
event, which can be uniquely determined by the multipath
profile h. By taking a time-reverse and conjugate operation
over the multipath profile, the corresponding TR signature
g is generated. Consequently, each of the points in the CSI
logical space as marked by “A”, “B”, and “C” is mapped
into the TR space as “A′”, “B ′”, and “C ′”. In the TR space,
the similarity between two profiles is quantified by TRRSs.
The higher the TRRS is, the more similar two profiles in the
TR space are. Similar profiles constrained by a threshold on
TRRS can be treated as a single class. Taking advantage of
the TR technique and the TR space, a centimeter-level accurate
indoor locationing system was proposed in [31], where each
of the indoor physical locations is mapped into a logical
location in the TR space and can be easily separated and
identified using TRRS. The TR based centimeter-level indoor
locationing system was implemented using commercial WiFi
chipsets in [32]. By leveraging the TR technique to capture
the characteristics of multipath profile at different locations,
two locations, even only with a distance of 1 to 2 centimeters,
are far away in the TR space and can be easily distinguished.

According to the literature, the wireless propagation around
the human body highly depends on the physical characteristic
(e.g., height and mass), the total body water volume, the
skin condition and other biological tissues. The human radio
biometrics, recording the features in interactions between EM
waves and human bodies, are unique among different indi-
viduals and are mapped into separate points in the TR space.
Hence, the proposed system, leveraging the TR technique, is
capable of capturing the difference in the multipath profile
introduced by different individuals, even when they stand at
the same location with the same posture under a through-the-
wall setting.

B. The Implementation

The system prototype consists of one 3-antenna transmit-
ter (TX) and one 3-antenna receiver (RX). The CSI sam-
ples are obtained from commodity WiFi chips. Moreover,
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Fig. 3. RF reflections and scattering.

the system is operated at carrier frequency 5.845 GHz with
40 MHz bandwidth. Due to the 3 × 3 MIMO transmission,
each measurement consists of 9 pieces of the CSI for each
transmitting-receiving antenna pair. Moreover, for each CSI,
it contains 114 complex values representing 114 accessible
subcarriers in a 40 MHz band.

To the best of our knowledge, the proposed system is
the first that utilizes commodity WiFi signals for human
identification.

C. The Challenges

Consider the simplified example in Fig. 3. In an indoor
wireless signal propagation environment, the human body acts
as a reflector and the red dots represent the reflecting and
scattering point due to the human body and other objects.
Since the wireless signal reaches the receiving antenna from
more than one path, the human radio biometrics are implicitly
embedded in the multipath CSI profile. However, the human
body may only introduce a few paths to the multipath CSI, and
the energy of those paths is small due to the low reflectivity
and permittivity, compared with other static objects such as the
walls and furniture. As a result, the human radio biometrics,
captured through radio shot, are buried by other useless
components in the CSI.

Furthermore, due to the fact that the raw CSI obtained from
WiFi chips is a 9 × 114 complex-valued matrix, the resulting
raw radio biometrics are of high-dimensional and complex
valued, which further complicates the identification and clas-
sification problem and increases the computation complexity.

D. The Proposed Solutions

To address the above problems, we exploit the TR tech-
niques and propose several post-processing algorithms to
extract the human radio biometrics and magnify the difference
among individuals. Specifically, we develop a background
subtraction algorithm such that the common information in
the CSI can be removed and the distinctive human radio
biometrics are preserved. By leveraging the TR technique,
the human radio biometrics in the form of complex-valued
matrices are related to the corresponding individual through a
real-valued scalar, the TRRS.

The design of the proposed time reversal human identifica-
tion system exploits the above idea and is made up of two key
components:

• Human radio biometrics refinement: This module extracts
the human biometric information from the raw CSI

measurement which is a 9 × 114 complex-valued matrix.
Due to the independency of each link, the background
for each link should be calculated and compensated indi-
vidually. An important consideration is that, for each CSI
measurement, it may be corrupted by the sampling fre-
quency offset (SFO) and the symbol timing offset (STO).
Hence, before background calculation and compensation,
the phase of each CSI measurement should be aligned
first. After alignment, based on the assumption that the
human radio biometrics only contribute small changes in
the multipath, the background can be obtained by taking
the average of several CSI measurements.

• TR-based identification: Once the 9×114 complex-valued
human radio biometric information is refined, this com-
ponent simplifies the identification problem by reducing
the high-dimension complex-valued feature into a real-
valued scalar. By leveraging the TR technique, the human
radio biometrics are mapped into the TR space and the
TRRS quantifies the differences between different radio
biometrics. The detailed methodology will be discussed
in Section III.

III. SYSTEM MODEL

The proposed system is built upon the fact that the wire-
less multipath comes from the environment where the EM
signals undergo different reflecting and scattering paths and
delays. According to the literature, the wireless propagation
around the human body highly depends on individual physical
characteristics and conditions of biological tissues. Since it is
rare for two individuals to have exactly the same biological
physical characteristics, the multipath profiles after human
interferences are therefore different among different persons.
The human radio biometrics, which record how the wireless
signal interacts with a human body, is altered accordingly
to individuals’ biological physical characteristics and can be
viewed as unique among different individuals. Through WiFi
sounding, the wireless CSI is collected, as well as the human
radio biometrics.

Mathematically, the indoor CSI (a.k.a. Channel frequency
response, CFR) for the mth link with the presence of human
body can be modeled as the sum of the common CSI compo-
nent and the human affected component:

h(m)
i = h(m)

0 + δh(m)
i , i = 1, 2, · · · , N, (1)

where N is the number of individuals to be identified. h(m)
i is

a L × 1 complex-valued vector, which denotes the CSI when
the i th individual is inside. L is the number of subcarriers,
i.e., the length of the CSI. h(m)

0 , defined as the static CSI
component, is generated from the static environment in the
absence of human, and δh(m)

i denotes the perturbation in the
CSI introduced by the i th individual. Here, the δh(m)

i is the
raw human radio biometric information of the i th individual
embedding in the CSI of the mth link.

At the receiver side, after each channel state sounding, we
can collect a L × M raw CSI matrix for each individual as

Hi = [h(1)
i , h(2)

i , · · · , h(M)
i ], ∀ i, (2)
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Fig. 4. TRRS map for each link. (a) Link 1. (b) Link 2. (c) Link 3. (d) Link 4. (e) Link 5. (f) Link 6. (g) Link 7. (h) Link 8. (i) Link 9.

with the corresponding human radio biometric information
matrix being

δHi = [δh(1)
i , δh(2)

i , · · · , δh(M)
i ], ∀ i, (3)

where M is the number of links between the transmitter and
the receiver.

At this point, for human identification and recognition, there
are two major problems:

1) both δHi and Hi are L × M complex-valued matrix.
Without appropriate data processing, the classification
problem based on the raw data is complex-valued and
of high computation complexity.

2) Since we have no idea of what h(m)
0 is, it is hard to

extract the buried biometric information δHi directly
from the CSI measurement Hi .

To tackle the first problem, we incorporate the TR tech-
nique to reduce the data dimension by transforming the
feature space into TR spatial-temporal resonance as defined
in Section III-A. Furthermore, for the second problem, data
post-processing algorithms are proposed to refine the human
radio biometrics from the raw CSI information as discussed in
Section IV.

A. Time-Reversal Spatial-Temporal Resonance

As discussed in Section I, when transmitting back the
TR signature through the corresponding multipath channel,
a spatial-temporal resonance is generated by fully collecting
energy of the multipath channel into a particular location in a
rich-scattering indoor environment. The spatial-temporal reso-
nance captures even minor changes in the multipath channel,
and it can be utilized to characterize the similarity between
two multipath CSI realizations.

The strength of TR spatial-temporal resonance, i.e., the
TRRS, in frequency domain is defined as follows.

Definition: The strength of TR spatial-temporal reso-
nance T R(h1, h2) in frequency domain between two CFRs

h1 and h2 is defined as

T R(h1, h2) =
max

φ

∣
∣
∣

∑

k

h1[k]g2[k]e jkφ
∣
∣
∣

2

(
∑L−1

l=0 |h1[l]|2
)(

∑L−1
l=0 |h2[l]|2

) . (4)

Here, L is the length of CFR and g2 is the TR signature of
h2 obtained as,

g2[k] = h∗
2[k], k = 0, 1, · · · , L − 1. (5)

Hence, the higher the value of T R(h1, h2) is, the more
similar are h1 and h2.

For two CSI measurements Hi and H j in a MIMO trans-
mission, we can obtain a 1 × M TRRS vector as

[T R(h(1)
i , h(1)

j ), T R(h(2)
i , h(2)

j ), · · · , T R(h(M)
i , h(M)

j )].
Then, the TRRS between two CSI matrices Hi and H j is

defined as the average of the TRRSs on each of the links,

T R(Hi , H j ) = 1

M

M∑

m=1

T R(h(m)
i , h(m)

j ). (6)

We show an example of the TRRS matrices of each link
for different CSI measurements captured by commodity WiFi
chips in Fig. 4. Due to the different spatial distributions of
each link, how the human body affects the CSI of each link
varies. Some link succeeds in capturing the human biometric
information and shows distinct TRRSs between different indi-
viduals as in Fig. 4c. Whereas, some link fails and the TRRSs
between test subjects are similar as shown in Fig. 4e.

B. Identification Methodology

After taking the radio shot, by means of the TR signal
processing, the high-dimension complex-valued human radio
biometrics embedded in the CSI measurements are mapped
into the TR space, and the feature dimension is reduced
from L × M to 1. The human recognition problem can be
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implemented as a simple multi-class classification problem as
following.

For any CSI measurement H, given a training database
consisting of the CSI samples of each individual Hi , ∀ i ,
the predicted individual identity (ID) is obtained based on the
TRRS as:

î =
{

arg max
i

T R(H, Hi ), if max
i

T R(H, Hi ) ≥ μ,

0, otherwi se,
(7)

where μ is a predefined threshold for triggering the identifi-
cation, and î = 0 denotes an unidentified individual.

However, as discussed above, the embedded human radio
biometric information δH is small compared with other
CSI components in measurement H. The resulting TRRS
T R(H, Hi) may become quite similar among different sam-
ples and thus the accuracy of identification degrades. In order
to improve the identification performance, we need to remove
the common components from each CSI measurement, and
to extract and refine the embedded human biometrics features
after taking the radio shot.

IV. RADIO BIOMETRICS REFINEMENT ALGORITHM

As the presence of human body changes the multipath
propagation environment of WiFi signals, the human radio
biometrics are implicitly embedded in the CSI measurements.
However, owing to the fact that only a few paths are affected
by the human body, the human biometrics CSI component for
the i th individual in the mth link, δh(m)

i , is small in energy,
compared with the common CSI component h(m)

0 in (1).
Without a refinement of the radio biometric information, the
common feature h(m)

0 in the CSI dominates in the TRRS in
(4) and (6). Moreover, since there exists similarity between
different human bodies, it is inevitable to have resemblances in
the human radio biometric information δh(m)

i . As a result, even
though the spatial-temporal resonance captures the δh(m)

i , the
difference between the TRRSs for different individuals may
become too small to differentiate between people. In this work,
we propose postprocessing algorithms to extract the useful
human radio biometric information from the CSI, after taking
the radio shot.

The process of the human radio biometrics refinement
includes the following two steps:

1) Phase compensation: In reality, the estimated CSI can
be corrupted by different initial phases of each measure-
ment and different linear phases on each subcarrier due
to the time synchronization error. Therefore, in order
for the proposed system to extract and subtract out
correct background CSI components, it is indispensable
to compensate for phase errors in all the raw CSI
measurements.

2) Background information subtraction: Note that the CSI
is modeled as the sum of static background CSI com-
ponents and human biometrics CSI components, so the
radio biometric information can be extracted by the
system through subtracting out the common information
in the CSI.

In what follows, we describe each of the algorithms in
detail.

A. Phase Alignment Algorithm

Considering the phase errors, each CSI h(m) can be mathe-
matically modeled as:

h(m)[k] =
∣
∣
∣h(m)[k]

∣
∣
∣ exp

{

− j (kφlinear + φini )
}

,

k = 0, 1, · · · , L − 1, (8)

where φlinear denotes the slope of the linear phase. φini is the
initial phase, and both of them are different for each CSI.

Unfortunately, there is no way to explicitly estimate either
φlinear or φini . To address the phase misalignment among the
CSI measurements, for each identification task, we pick one
CSI measurement in the training database as the reference and
align all the other CSI measurements based on this reference.

To begin with, we find the linear phase difference δφlinear

between the reference and the other CSI samples. For any
given CSI h2 and reference h1 from the same link, we can
have

δφlinear = arg max
φ

∣
∣
∣

∑

k

h1[k]h∗
2[k] exp

{

jkφ
}∣
∣
∣. (9)

To align the linear phase of the CSI h2 according to the
reference, we simply compensate for this difference on each
subcarrier through

ĥ2[k] = h2[k] exp
{

− jkδφlinear

}

, k = 0, 1, · · · , L − 1.

(10)

Once upon all the linear phase differences of the CSI
measurements have been compensated based on the reference,
the next step is to cancel the initial phase of the CSI for each
link, including the reference. The initial phase is obtained as
the phase on the first subcarrier for each CSI � ĥ[0], and can
be compensated as

halign = ĥ exp
{

− j � ĥ[0]
}

. (11)

In the following discussion, both the background and the
refined human biometric information are extracted from the
aligned CSI measurements halign . To simplify notation, we
will use h instead of halign to denote the aligned CSI in the
rest of the paper.

B. Background Subtraction Algorithm

In the proposed CSI model in (1), the radio biometrics
δh(m)

i also involves two parts: the common radio biometric
information and the distinct radio biometric information. Thus,
h(m)

i can be further decomposed as following:

h(m)
i = h(m)

0 + δh(m)
i,ic + δh(m)

i,c , ∀i, m, (12)

where δh(m)
i = δh(m)

i,c + δh(m)
i,ic . δh(m)

i,c denotes the common
radio biometric information, which is determined by all the
participants in the identification system. Meanwhile, δh(m)

i,ic
is the corresponding distinct radio biometric information,
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Fig. 5. Experiment setting: floorplan and device. (a) Indoor experiment floorplan with dimensions. (b) Transmitter or receiver devices. (c) Test room
configuration. (d) Locations of test subjects and devices.

remaining in the extracted radio biometrics after taking out
the common biometric information.

The background CSI components for several CSI measure-
ments of N individuals can be estimated by taking the average
over the aligned CSI as:

h(m)
bg = 1

N

N
∑

i=1

h(m)
i

∥
∥
∥h(m)

i

∥
∥
∥

2 . (13)

Then the human radio biometrics for each individual can
be extracted through subtracting a scaled version of the
background in (13) from the original CSI.

h̃(m)
i = h(m)

i − αh(m)
bg , (14)

where α is the the background subtraction factor, 0 ≤ α ≤ 1.
It can not be too close to 1 as the remaining CSI will be
noise-like. The impact of α is studied in Section V-B.

After obtaining the refined radio biometrics h̃(m)
i for each

link, the classification problem based on the TRRS in (7)
becomes:

î =
{

arg max
i

T R(H̃, H̃i ), if max
i

T R(H̃, H̃i ) ≥ μ,

0, otherwi se,
(15)

where H̃i is the refined radio biometric information matrix for
individual i and

H̃i = [̃h(1)
i , h̃(2)

i , · · · , h̃(M)
i ], ∀ i. (16)

H̃i is an approximation of the distinctive component in the
human radio biometric information matrix δHi defined in (3).

An example is shown in Fig. 6, where the TRRS
T R(H, Hi) before background subtraction is plotted in Fig. 6a
while that of T R(H̃, H̃i ) is in Fig. 6b, with the background
as the average of all CSI measurements in training database.
The comparison between two figures demonstrates that the
refinement of human radio biometrics helps to improve the
sensitivity of TRRS for differentiating between individuals.
The proposed background subtraction algorithm suppresses
the spatial-temporal resonance of the CSI between different
classes while maintaining strong resonance within the same
class.

For the proposed system, if there are K subjects to be iden-
tified, the computational complexities for building the training
database and testing are both O(M × (K + 1) × N log2 N),

where M is the number of either the training CSI samples
or the testing CSI samples for each subject. N is the search
resolution for φ in (4) and (9), where typical values for N are
512 and 1024.

V. PERFORMANCE EVALUATION

By leveraging the TR technique to capture human radio
biometrics embedded in the CSI of WiFi signals, the proposed
system is capable of identifying different individuals in real
office environments with high accuracy. In this section, the
performance of human identification is evaluated. For the
proposed system, the training, i.e., taking the radio shot, is
simple and can be done in seconds.

A. Experiment Settings

The evaluation experiments are conducted in the office at
the 10th floor of a commercial office building with a total of
16 floors. The floorplan of the experiment office is shown
in Fig. 5a. Surrounding the experiment office, there are 4
elevators and multiple occupied offices. All the experiments
are conducted during the normal working hours in weekdays,
so that outside the experiment office there are many activities,
such as human walking and elevator running, happening at the
same time as the experiments run.

In Fig. 5d the experiment configurations of the transmitter,
receiver and individuals are demonstrated. Both WiFi devices
are placed on the cart or table with height from the ground
being 2.8ft as shown in Fig. 5b. When the transmitter (bot)
is on location denoted as “A”, the receiver (RX) is placed on
the locations denoted from “Loc 1” to “Loc 5”. Otherwise
when the bot is on location “B”, the receiver is on “Loc
6” to “Loc 10” respectively. These 10 TX-RX locations can
represent Line-of-sight (LOS) scenario (“Loc 1”), non LOS
(NLOS) scenarios (“Loc 2” to “Loc 6”), and through-the-wall
scenarios (“Loc 7” to “Loc 10”). When taking the radio shot,
each individual, to be recognized, stands in the room on the
point marked by the purple star and the door of this room is
closed.

Furthermore, in the experiments, we build the training
database with 50 CSI measurements for each class, while
the size of the testing database for identification is 500 CSI
measurements per class. The physical characteristics of test
subjects are listed in Table I. The first five subjects participate
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TABLE I

PHYSICAL CHARACTERISTICS OF TEST SUBJECTS IN HUMAN IDENTIFICATION EXPERIMENT

Fig. 6. Comparison on TRRS maps with and without background subtrac-
tion. (a) No background subtraction. (b) After background subtraction with
α = 0.5.

in experiments in Section V-B and Section V-C, while all
the 11 subjects take part in the identification experiment
in Section V-D. The 2nd individual is the subject in the
verification experiments in Section V-E.

B. Impact of Background Subtraction

To begin with, we first quantitatively study the impact of the
proposed background subtraction and biometrics refinement
algorithms on human recognition.

As shown by Fig. 6, after refinement the spatial-temporal
resonance between the training and the testing CSI from
different classes is suppressed a lot while maintaining a high
TRRS for the CSI from the same class. In Table II, the
performance matrices for human identification are listed to
show the performance improvement after refining the radio
biometrics. Each element of the performance matrix is the
probability for that the TRRS between the training and the
testing classes is higher than the threshold μ. A higher value
in the diagonal means a larger chance of correct identifications.
However, larger off-diagonal elements indicate higher false
alarm rates because it implies that the testing sample may
be misclassified to the wrong training class with a higher
probability if the testing class has never been included in the
training set.

Both of the matrices in Table II have the same threshold
μ = 0.9 as defined in (7) and (15). Without background
subtraction, although the diagonal value can reach 100%, the
off-diagonal ones can be as high as 99.99% as shown in
Table IIa. A high off-diagonal value implies a larger chance
to have a false alarm between these particular training and
testing classes. Nevertheless, after background subtraction,
when using the refined radio biometrics for identification, the
largest off-diagonal value drops to 0.24% while maintaining
the diagonal elements higher than 96.35%.

TABLE II

PERFORMANCE MATRIX OF INDIVIDUAL IDENTIFICATION WITH AND

WITHOUT BACKGROUND SUBTRACTION. (a) NO BACKGROUND

SUBTRACTION. (b) AFTER BACKGROUND

SUBTRACTION WITH α = 0.5.

1) Background Selection: How to choose the background
CSI components is essential for a good radio biometrics refine-
ment. In this part, we study the performance of identification
under three schemes: no background subtraction, subtraction
with the static environment background, subtraction with the
background consisting of static environment and common
radio biometrics. We compare the receiver operating charac-
teristic (ROC) curves in Fig. 7a.

The ROC curves, which are obtained by averaging the
ROC performance measured at all 10 TX-RX locations, show
how the identification rate and false alarm rate vary as the
decision threshold μ changes. The red dashed line denotes the
performance when using all the CSI measurements in training
data set as the background (i.e., the background consisting
of static environment and common radio biometrics), while
the blue solid line and green dotted line represent the case
of no background subtraction and subtraction with the static
environment background, respectively. Here, the background
subtraction factor is α = 0.5. The performance of the system
using all the training CSI measurements outperforms the
others. The reason is that, by taking the average of the
CSI samples from all the classes as the background, we
effectively eliminate the high correlated and similar compo-
nent in radio biometrics for different individuals, which is
the estimation of h(m)

0 + δh(m)
i,c as defined in (12), and thus

enlarge the difference between the radio biometrics of different
people.

2) Optimal Background Subtraction Factor: After we have
determined the optimal background, the next question is to
find the optimal background subtraction factor α. In Fig. 7b,
the ROC performance is plotted to evaluate the impact of
different α. When α = 0.9, the identification performance
is the worst because the remaining CSI components after
background subtraction is noisy and has few information for
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Fig. 7. Evaluation on ROC curves for background subtraction and TX-RX locations. (a) Different selected backgrounds. (b) Different α for Loc 7.
(c) Different TX-RX locations.

human biometrics. Through the experiment, we find α = 0.5
is optimal for individual identification. In the rest experiments,
we adopt α = 0.5 and the all-CSI background scheme.

C. Impact of TX-RX Locations

Next, we would like to evaluate the impacts of TX-RX
configurations on the performance of human identification.
“Loc 1” represents LOS scenario where the transmitter,
receiver and experiment individual are in the same room.
“Loc 2” to “Loc 6” represent the NLOS case where either
the transmitter or the receiver is in the same room with the
individual, while the other device is placed outside. Moreover,
in the through-the-wall scenarios, represented by “Loc 7”
to “Loc 10”, the individual to be identified is in the room
while both the transmitter and the receiver are outside and in
different locations.

The identification performance of different scenarios is
plotted in Fig. 7c. The performance comparison can be sum-
marized from the best to the worst as: Loc 7 > Loc 2 >
Loc 3 > Loc 10 > Loc 1 >Loc 5 > Loc 9 > Loc 4 >
Loc 8 > Loc 6. There is no direct relation between identifi-
cation performance and the distance between the transmitter
and the receiver. Moreover, the LOS scenario is not the best
configuration for human identification. As we discussed, the
human radio biometrics are embedded in the multipath CSI.
Due to the independency of each paths in theFr multipath
CSI, the more paths the CSI contains, the larger number of
degrees of freedom it can provide in the embedded human
radio biometrics. Consequently, owing to the fact that there
are fewer multipath components in the CSI of the LOS
scenario, less informative radio biometrics are extracted, which
degrades the performance of identification. The results in
Fig. 7c also demonstrate the capability of the proposed system
for through-the-wall human identification, in that no matter
which configuration is selected the proposed system has a high
accuracy.

1) Special Case Study: To better understand the impact
of TX-RX locations on the identification capability of the
proposed system, six examples are investigated and compared
in Table III by using the performance matrices defined at the
beginning of Section V-B.

In Table IIIa, IIIb and IIIc, the performance matrices for
LOS case “Loc 1”, NLOS case “Loc 6” and the through-the-
wall case “Loc 7” with the threshold μ = 0.9 are listed. For
“Loc 1”, there is no off-diagonal element larger than 0, but
the diagonal element for the 5th individual is only 51.59%.
This is because in the LOS configuration the human body to
be identified is close to both the transmitter and the receiver,
which leads to stronger radio biometrics embedded in the CSI.
This makes different individuals more distinguishable while
making the identification system sensitive and vulnerable to
small variations on the human body, e.g., the slight incon-
sistency in poses and standing location of human. “Loc 6”
has the worst performance, since its off-diagonal element
could reach 97.32%. Meanwhile, the through-the-wall scenario
“Loc 7” becomes the most ideal configuration for individual
identification in that the minimum diagonal element is higher
than 96% and the largest off-diagonal element is only 0.24%.

Similarly, in Table IIId, IIIe and IIIf, with the require-
ment of a minimum diagonal element larger than 99%, the
corresponding performance matrices of the aforementioned
three cases are shown. To maintain the diagonal values, the
identification system has to reduce the threshold μ which
inevitably introduces larger off-diagonal elements and more
false alarms. Except for the ideal configuration “Loc 7”, the
other two examples sacrifice the off-diagonal performance to
91.9% and 99.46% respectively.

We can conclude that among the 10 TX-RX locations tested
in the experiment, “Loc 7” is the optimal configuration for the
proposed system, and is adopted in the following experiments.

D. Human Identification

From the above analysis, we have already observed that
the performance of the proposed human identification system
is influenced by both the background subtraction and the
TX-RX configurations. In this part, the performance is eval-
uated in a large data set of 11 individuals, with optimal
background subtraction applied and “Loc 7” TX-RX config-
uration. The corresponding ROC curve is plotted in Fig. 8.
With a threshold μ being 0.91, the average identification
rate is 98.78% and the average false alarm rate is 9.75%.
This is because, when two individuals have similar body con-
tour, the possibility of misclassifying between them increases.
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TABLE III

COMPARISON ON PERFORMANCE MATRICES. (a) LOC 1 WITH THRESHOLD μ = 0.9. (b) LOC 6 WITH THRESHOLD μ = 0.9. (c) LOC 7
WITH THRESHOLD μ = 0.9. (d) LOC 1 WITH MINIMUM DIAGONAL > 0.99. (e) LOC 6 WITH MINIMUM DIAGONAL > 0.99.

(f) LOC 7 WITH MINIMUM DIAGONAL > 0.99

Fig. 8. ROC curve of identifying 11 individuals.

However, since not only the contour but also the permittivity
and conductivity of body tissue, which is more distinct for
different individuals, will affect the WiFi signal propagation
that encounters the human body, the accuracy of identification
is still high. In the current performance evaluation, the number
of participants is 11. We are inviting more people to partic-
ipate in the experiment and collecting more data for further
validation and analysis.

E. Individual Verification

In this set of experiments, we study the performance of indi-
vidual verification using proposed system. Instead of finding
the correct identity among several possible ones, the individual
verification is to recognize a specific individual with variations
in both the human body and the environment.

Fig. 9. Comparison on TRRS map on stationarity. (a) No training database
updating. (b) With training database updating.

1) Stationarity Over Time: To begin with, the stationarity
of human verification performance is discussed. We collect
the CSI measurements for both the empty room and with
one individual inside twice a day for three consecutive days.
The TRRS maps are demonstrated in Fig. 9. As shown in
Fig. 9a, if we only use the CSI from the first measurement as
the training set, the TRRS within the same class gradually
decreases. This leads to a 90.83% identification rate with
the threshold μ = 0.75. However, if we update the training
set every time after measurement and identification, e.g. for
Day 2 morning experiment the training set consists of the
CSI from measurements at Day 1 morning and afternoon,
the identification rate increase to 97.35%. The details of
the verification accuracy is listed in Table IV. Hence, to
combat the variations over time, the training data set for both
identification and verification should be updated regularly.

2) Other Variations: In this experiment, the impact of
other types of variations such as wearing a coat, carrying a
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Fig. 10. Evaluation on impacts of obstructions. (a) Test configuration. (b) Behind a table. (c) Behind a chair. (d) ROC curves for different obstructions.

TABLE IV

PERFORMANCE MATRIX FOR STATIONARITY STUDY

TABLE V

LIST OF THE SIX CLASSES OF VARIATION

Fig. 11. Study on human pose effects. (a) Test poses. (b) ROC curves with
different poses.

backpack/laptop on the accuracy of verification is discussed.
We consider six classes as listed in the Table V and the
corresponding TRRS map is shown in Fig. 12.

The detailed verification performance is discussed in
Table VI where the relation of the threshold μ and the

Fig. 12. TRRS map of variation.

TABLE VI

IDENTIFICATION RATE UNDER VARIATIONS

capability of differentiating between different variations is
studied. Here, the training set only contains the CSI from
class #1. A low threshold μ reduces the sensitivity of the pro-
posed system in verification. When the threshold μ increases,
it may be able to tell whether the individual is wearing a
coat and a backpack, shown by the 0 percentage for class #3
to be misclassified as class #1 in Table VI. In terms of the
backpack with or without laptop inside, as they are shadowed
by the human body, the introduced variations have relatively
small impact on the accuracy of verification.

VI. DISCUSSION

Through the above experiments, the capability of identifying
and verifying individuals through-the-wall of the proposed TR
human identification system has been proved. In this section,
the impacts of obstructions and test subjects’ postures are
evaluated and discussed. The performance of the proposed
system is further studied by comparing with a RSSI-based
identification system, and the current limitation of the pro-
posed system is discussed.

A. Impacts of Obstructions

Experiments are conducted to evaluate and compare the
identification accuracy when there is an obstruction in front
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of and in the same room with the test subject. The office
configuration is shown in Fig. 10a. The ROC curves for
testing under no obstruction, behind a desk as in Fig. 10b and
behind a big chair as in Fig. 10c are plotted and compared
in Fig. 10d. With a similar level of false alarm, the average
identification rate for the no-obstruction scenario is 97.57%
and the corresponding average false alarm rate is 9.85%. When
there is a table in front of the subject against to the wall,
the average identification rate increases to 99.53% while the
average false alarm rate is 8.82%. When a big chair is put in
front of the test subject with a very short distance, the system
has an average identification rate of 97.44% and an average
false alarm rate of 8.43%. When there is an obstruction
between the test subject and the transceiver, because of the
reflections and penetrations, more copies of the transmitted
signal are created, along with more multipath components. If
the obstruction does not attenuate the signal much, most of the
signals radiated from the obstruction will eventually encounter
the test subject. Then more radio biometric information can be
captured through the multipath propagation, which helps the
identification performance. However, if the obstruction is thick
in size and has a large vertical surface which attenuates and
blocks most of the incoming signals, there will be fewer multi-
path components passing through the human body. As a result,
less informative radio biometrics are obtained, compared with
the no-obstruction case. Furthermore, as demonstrated in this
experiment, the existence of furniture as the obstruction does
not affect the system much.

However, the multipath profile changes when the obstruction
changes, especially when the obstruction locates between the
transmitter and the receiver link and in front of the test
subject. The TR technique is trying to capture the difference in
multipath profile, and of course it will capture the difference
introduced by obstruction changes in the meantime. Hence,
if an individual is behind a large desk during the training
phase and later stands behind a small desk for the testing, the
proposed system will notice this change in multipath profiles,
leading to a mismatch in the training database.

B. Impacts of Human Postures

Experiments have been conducted to evaluate the effects
introduced by human poses. Under the setting in Fig. 10a,
4 participants are asked to stand at the same location and
perform 5 different poses by lifting their arms with different
degrees and directions, as shown in Fig. 11a. The correspond-
ing ROC curves are shown in Fig 11b.

In the experiment, we select 50 samples for each subject
under the 1st pose as the training set. When the testing
samples come from the same pose, the identification rate
reaches 97.67% with a false alarm rate being 5.58%. However,
as the participants change their poses from the 2nd one to
the 5th one, the identification rate drops from 95.66% to
88.06%, 58.83% and 79.29% with a false alarm rate around
5.6%. The experimental results validate that pose changes will
degrade the system performance. The system is robust to slight
changes in posture, e.g., from pose 1 to pose 2. However,
as shown by the ROC curve of testing over pose 4 data

Fig. 13. RSSI values variation of 11 individuals.

with the pose 1 training in Fig. 11b, when the pose alters
the propagation environment a lot, the proposed TR human
identification system fails to find a match in the training
database. In the 4th pose, the test subject is asked to lift the left
arm with 90 degree and the direction being perpendicular to
the link between the transmitter and the receiver. On the other
hand, in the 5th pose, test subjects lift the arm at the same
height but the arm is parallel to the TX-RX link. Compared the
result of testing over the 5th pose with that over the 4th pose,
it is noticed that the identification accuracy drops more if the
pose changes the silhouettes in a manner that is perpendicular
to the TX-RX link.

Hence, when poses or standing locations change, the multi-
path profiles in the TR space for a test subjects might fall out of
the “proximity” (range of a high similarity) of his or her self,
which results in a reduce in the identification rate. Moreover,
a worse situation is that the changed multipath profiles fall
into the “proximity” of other test subjects which leads to an
increase in the false alarm rate.

C. Comparison With RSSI-Based Approach

Using the standard WiFi chipsets, besides the CSI, in
each measurement we can also obtain a 7 × 1 RSS vectors,
consisting of 6 RSS values for 3 receiving antenna in each
20 MHz band and 1 overall RSS value. Here, we treat each
real-valued 7 ×1 vector as the feature and apply the k nearest
neighbors (kNN) classifiers to the measurements.

1) RSSI for Identification: We first test the identification
accuracy of the RSSI-based approach on the dataset of 11
individuals. From the results in Fig. 13, the RSSI difference
between different individuals is small. The false alarm rate is
68.07% and the identification rate is only 31.93%, which is
far inferior to the proposed identification system.

2) RSSI for Verification: In Fig. 14, the stationarity is
evaluated and from the plot it is obvious that the RSS value
is not stable over time. Without training database update,
the identification rate for the individual is only 89.67% with
a 10.33% possibility that the individual is misclassified as
an empty room. Even with the training database update, the
identification rate does not improve due to the instability of
the RSS values over time.
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Fig. 14. RSSI values comparison on stationarity. (a) RSSI for empty room.
(b) RSSI with individual present.

Fig. 15. RSSI values comparison on variations.

TABLE VII

CONFUSION MATRIX UNDER RSSI-BASED APPROACH

Furthermore, in terms of verifying individual with small
variations as listed in Table VI, the RSSI-based approach can
hardly differentiate between different variations by only using
the 7×1 RSS vector as shown in Fig. 15 and in the confusion
matrix of individual verification in Table VII. The reason for
its insensitivity to small variations is the same as that for its
incapability in human identification. The 7 × 1 RSS vector
feature only captures little human radio biometric information
and loses the individual discrimination.

Hence, even though the RSSI-based approach is robust to
the small variations on human body, it cannot be put into
practice for human identification and verification. Moreover,
since RSSI is only a real-valued scaler which approximately
represents the received signal power, it is less informative,
susceptible to noise and has large intra-class variations which
degrades the identification accuracy a lot when the number
of test subjects increases. Compared with the RSSI-based
approach, the proposed TR human identification system suc-
ceeds in capturing and extracting the human radio biometric
information embedded in the CSI, and in distinguishing indi-
viduals with high accuracy through-the-wall.

D. Limitations

At current stage, the proposed TR human identification
system exhibits some limitations:

1) The proposed system adopts a simple model for human
radio biometrics embedded in the CSI as shown in (1).
As a result, the obtained human radio biometrics δh and
the environment component h0 is correlated. In other
words, the human radio biometrics δh is location-
dependent, which requires the system to run in an
environment consistent over time. Future work includes
developing algorithms to separate the human radio bio-
metrics and the outside environment.

2) Current system is equipped with only one pair of the
transmitter and the receiver, and hence its performance
can be improved by deploying more transceiver pairs
to capture fine-grained human radio biometrics from
different directions simultaneously.

3) In the current work, it is difficult to scientifically prove
the uniqueness of human radio biometrics, when taking
into account how complicated the techniques it requires
to extract all of these biological features from each indi-
vidual are. In the future work, experiments that involve
more subjects will be conducted and techniques that
can record other biological features will be utilized to
provide more details in human biological characteristics,
such as the muscle mass index and the body temperature.
With more detailed information regarding individual
biological features besides the common information like
height, weight, gender and clothing, the uniqueness
of radio biometrics can be well studied, tested and
verified.

Despite these limitations, we believe the proposed TR
human identification system should be viewed as a milestone
in the development of both the human identification systems
and wireless sensing systems. For the current system, it can
be implemented in the environments that remain stationary
most of the time. For example, it can be implemented for
identity verification at places like bank vaults to allow the
entry of authorized staff. It can also be used in home security
systems, functioning as wireless electronic keys in vacation
houses. Moreover, the location embedded radio biometrics are
helpful in applications that require to tell both who the test
subject is and where the test subject is. Once the environment-
independent radio biometric information is extracted out, the
proposed system can work to identify individuals without
noticied by test subjects and implement in applications that
require no direct contact with test subjects or where there are
obstructions in-between the sensor and the subject.

VII. CONCLUSIONS

We propose a TR human identification system, where indi-
viduals are distinguished from and identified by the human
radio biometrics extracted from the WiFi CSI through the
TR technique. Furthermore, the existence of the human radio
biometrics, which can be found embedding in the indoor
WiFi signal propagation and captured through radio shot, is
shown and verified in this work. As this new type of biomet-
rics is introduced, it motivates a novel human identification
technique relying on wireless sensing with WiFi signals. By
leveraging the TR technique to extract radio biometrics, a
low-complexity human identification system can be widely
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implemented without restrictions on the device deployment
thanks to the ubiquitousness of WiFi.
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