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Abstract—As automobiles have become an essential part to
facilitate our daily life, advanced driver assistance systems
(ADASs) have been gaining more and more interest in assist-
ing drivers to enhance both safety and convenience. To respond
timely in case of an emergency, ADAS needs to keep track of
the driver’s health/consciousness, which is generally achieved by
monitoring the driver’s vital signs, including respiration rate
(RR), heart rate (HR), and heart rate variability (HRV). However,
most of the state-of-art solutions need to assume that the human
is stationary, which does not hold in practical driving scenar-
ios. To tackle the problem, we propose a novel system, which
can estimate driver’s RR, HR, and interbeat intervals (IBIs)
in the presence of driver’s motion artifacts using commercial
millimeter-wave (mmWave) radio. The system consists of two
key components. First, to extract the reflection signals contain-
ing vital signals, the motion artifacts are first removed by a
novel motion compensation module, followed by the periodic-
ity check to identify the components with vital signals. Second,
the respiration and heartbeat signals are reconstructed by jointly
optimizing the decomposition of all the extracted compound vital
signals over different range-azimuth bins. We evaluate the system
performance in a real driving environment and investigate the
impact of different parameters, including the device locations,
pavement conditions, and motion types. The experimental results
show that the proposed system can achieve a median error of
0.16 respiration per minute (RPM), 0.82 beat per minute (BPM),
and 46 ms for RR, HR, and IBI estimations, corresponding to the
relative accuracy of 99.17%, 98.94%, and 94.11%, respectively.

Index Terms—Advanced driver assistance systems (ADASs),
driver vital signs monitoring, millimeter-wave radio, motion
artifacts elimination, wireless sensing.
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I. INTRODUCTION

AUTOMOBILES have become a daily necessity in the
current fast-paced world due to its mobility, conve-

nience, and comfortableness. Statistics show that the number
of worldwide automobiles on-the-road has reached 1.2 billion
by 2015 [1]. However, in the meanwhile, road traffic crashes
result in about 1.35 million deaths around the world each year
and leave between 20 and 50 million people with nonfatal
injuries [2], according to the World Health Organization.

To reduce the number of road accidents and enhance the
driving safety, automobile manufacturers, and researchers have
been working on more and more advanced driver assistance
systems (ADASs). Among many popular topics in autonomous
driving, driver’s vital sign monitoring is one of the essential
components. Continuously monitoring driver’s status makes
it possible to allow the ADAS to take control of the automo-
biles in case of emergency, such as when the driver encounters
a sudden heart attack, stroke, or fatigue, which can be pre-
dicted/indicated by using the driver’s heart rate variability
(HRV), i.e., the variation of the interbeat intervals (IBIs). HRV,
in combination with heart rate (HR) [3] and respiration rate
(RR) [4], has been well established as a good indicator of
cardiac arrhythmia, alcohol usage [5], mental stress [6] and
drowsiness [7], and thus predicts the human alertness well.

Traditional driver vital signs monitoring solutions mainly
include two categories: 1) sensor-based methods and 2) vision-
based methods. The sensor-based methods require a driver
to wear physiological sensors, such as photoplethysmography
(PPG) [8], electrocardiogram (ECG) [9], [10], and elec-
troencephalography (EEG) [11], [12] to monitor vital signs.
However, it is cumbersome and uncomfortable to wear these
dedicated sensors in the daily commute. Moreover, wearing
sensors may distract driver’s attention, degrading the safety,
and user experience. As a less intrusive solution, vision-based
methods utilize image sequences to detect the vital signs,
including RR [13], HR [14], and HRV [15], [16]. However, the
main drawbacks such as its poor performance in low-light sce-
narios and the privacy concerns hinder the wide deployment
of the vision-based systems.

With the development of wireless sensing [17]–[19], radio
frequency (RF)-based methods have become one of the most
promising candidates. Intuitively, the presence of a human sub-
ject will affect the RF propagation [20]–[23], i.e., RF signals
reflected off human subjects will be modulated by the body
movement, including chest movement due to respiration and
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heartbeat. As a result, RF-based systems can estimate vital
signs without any physical contact, while preserving the user
privacy and operating robustly regardless of the light condi-
tions. Many existing work have validated the feasibility of
RR [24]–[26], HR [27]–[30], and HRV [31]–[35] monitoring
using RF signal. However, most of these solutions focus on
indoor scenarios with stationary human subjects, which cannot
deal with the noisy in-car environment with engine vibrations,
road vibrations, and human body motion. Therefore, accu-
rate RF-based driver vital sign monitoring needs to be further
investigated.

Technically, it is nontrivial to enable RF-based driver vital
signs monitoring. First, during driving, the driver exhibits
frequent and unpredictable motion (e.g., control the steering
wheel, head movement to keep track of the car, body roam-
ing due to acceleration or brake, etc.), which frequently cause
dominant motion larger than respiration and heartbeat, and can
easily corrupt the periodic variations induced by vital signals.
Therefore, it is hard to distill the minute motion caused by
vital signals through the raw RF signal.

To overcome the problem, we design a two-step motion
compensation algorithm. Note that the reflection profile of the
driver stays similar considering the resolution of the system
and the size of the target. Given such an observation, in the first
step, the location change of the driver is compensated based
on the cross-correlation between consecutive channel impulse
response (CIR). After that, the reflections corresponding to
the same part of the human body will be aligned in the same
range-azimuth bin over time. To further remove the fine motion
artifacts and recover the periodicity of vital signals revealed in
the phase measurement, in the second step, the motion trend
is further estimated by smoothing spline and then eliminated.

Second, even if we have eliminated most of the effect
of body motion, it is still challenging to extract individual
heartbeats from the compound vital signals. This is because
that the distance change caused by heartbeat is an order of
magnitude smaller than that caused by respiration, and the
heartbeat signal is easily to be submerged. Moreover, these
subtle cardiogenic body movements lack sharp peak feature
as in ECG signals, making it harder to accurately pinpoint the
exact timing of heartbeats for HRV estimation.

To tackle these challenges and reconstruct respiration as
well as heartbeat signals from the RF reflections, in this arti-
cle, we propose a joint decomposition method by exploring
the following properties of the vital signals.

1) Both respiration and heartbeat signals are quasi-periodic
signals, where the normal frequency of respiration and
heartbeat are 6–30 respiration per minute (RPM) and
50–120 beat per minute (BPM), respectively.

2) The reflections from the human chest would occupy
different range taps and azimuth angles (known as
range-azimuth bins as shown in Fig. 1) considering the
range-azimuth resolution of the device and the size of
the human body. Hence, the vital information contained
in multiple range-azimuth bins can be jointly optimized
to improve the estimation accuracy.

3) The frequency of vital signals reflected by different
parts of the human chest (corresponding to different

Fig. 1. Vital signals in different range-azimuth bins.

range-azimuth bins) stay the same because the reflec-
tions come from the same human subject. However, the
distance change caused by respiration and heartbeat can
be distinct in different parts of human body due to the
physiological structure as shown in Fig. 1. Therefore, for
all the range-azimuth bins containing vital signals, we
would observe periodic signals with the same frequency
but different amplitude in the phase measurement.

Leveraging the aforementioned properties, we jointly
optimize the decomposition of the vital signals in different
range-azimuth bins as an ensemble of band-limited signals.
The respiration and heartbeat signals can be further recon-
structed by using the empirical mean of the corresponding
component overall range-azimuth bins for RR, HR, and IBI
estimations.

We prototype our system using a single commodity off-the-
shelf (COTS) millimeter-wave (mmWave) radio and conduct
extensive on-road tests to evaluate the performance. We recruit
four volunteers (two males and two females) to help on the
data collection, and the testing route is a cycle of 50.7 miles,
including local routes and highway with different road condi-
tions. The impact of different factors, including the pavement
condition, the device location, and user heterogeneity are
investigated. The experimental results show that the proposed
system can achieve accurate estimations with the median errors
of RR, HR, and IBI estimation being 0.16 RPM, 0.82 BPM,
and 46 ms, respectively. We also compare the proposed system
with the state-of-the-art works, which validates the superiority
of our system in accuracy and robustness. To the best of our
knowledge, it is the first RF-based driver vital sign monitoring
system that can achieve accurate HRV estimation with motion
artifacts.

The remainder of this article is organized as follows. We
review the related works in Section II. The system and theo-
retical model are introduced in Section III, followed by vital
motion extraction in Section IV and vital signs estimation in
Section V. Section VI evaluates the performance of the system.
The future work is discussed in Section VII and the whole
work is concluded in Section VIII.

II. RELATED WORK

With the proliferation of automobiles, there has been a
surging demand in monitoring driver’s vital signs to provide
driving assistance and safety enhancement. Compared with
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the traditional method that requires users to wear contact sen-
sors, the contactless method is less intrusive and can reduce
the driver distracting issue. Existing approaches for contact-
less driver’s vital signs monitoring can be classified into two
categories: 1) the vision-based method and 2) the RF-based
method.

A. Vision Based

Vision-based methods utilize the image sequences to mon-
itor vital signs. In principle, the breathing process causes
involuntary quasi-periodic thoracic and abdominal movements,
which can be captured by video stream and thus utilized for
the RR estimation [13]. It has also been studied that the skin
color changes caused by blood perfusion can be used as a good
feature to estimate HR [14] and HRV [15], [16]. However, the
vulnerability to the lighting condition and the privacy invasions
are the main drawbacks hindering the widely deployment of
the vision-based system.

B. RF-Based

Compared with the vision-based method, the RF-based
method is more robust in handling environment change (e.g.,
the light and temperature condition). However, note that the
displacement caused by body roaming is usually larger than
that caused by respiration and heartbeat. As a result, han-
dling the motion artifacts is one of the biggest challenges to
achieve RF-based driver’s vital sign monitoring. Preliminary
works [36], [37] try to get rid of the driver’s motion by care-
fully placing the device (e.g., embedded in the car seat or the
seat belt) and simply utilize the basic time-frequency analysis
[e.g., the fast Fourier transform (FFT)] to estimate the vital
signs. However, the assumption that the dominant frequency
component is caused by vital signals may not hold in the real
driving scenario when the user encounters large body motion
(e.g., body roaming due to acceleration or brake).

To eliminate body movement, multiple transceivers have
been deployed at opposite sides of a human body [38], [39].
However, it significantly increases the system complexity and
deployment cost, and thus making it hard to implement in
practice. The correlation of range taps between different time
blocks is used in [40]–[42] to remove the body movement in
the system with a single transceiver. However, this method
can only remove specific body movement that is larger than
the range resolution, and the motion artifacts within the range
resolution still remains, thus reducing the estimation accuracy.
To remove the motion artifacts located in the same range
tap, polynomial fitting is used in [43] to estimate the dis-
placement caused by body motion. However, the order of the
polynomial fitting needs to be carefully selected for different
motion types, which is not robust in practical use. Note that
the above systems can only estimate HR, and the residual sig-
nal after motion elimination is too noisy to extract the exact
time of heartbeats for further HRV estimation. In contrast, the
proposed system can estimate the driver’s vital signs includ-
ing RR, HR, and more importantly HRV regardless of motion
artifacts, which is not achievable in existing works.

Fig. 2. Processing flow of system.

III. SYSTEM OVERVIEW AND THEORETICAL MODEL

A. System Overview

The proposed system aims at noncontact driver’s
vital sign monitoring in practical driving scenarios with
inevitable random motions by using a single commodity
frequency-modulated continuous-wave (FMCW) radar. The
pipeline of the system is shown in Fig. 2, which consists of two
main modules: 1) vital motion extraction and 2) vital signs
estimation.

In the first stage, the vital motion extraction module extracts
the bins containing vital signals from the channel information.
To begin with, conventional beamforming is performed on the
channel information to get the CIR at different range-azimuth
bins. Then, the clutter removal is performed to subtract
the background reflections. However, vital signals cannot be
directly extracted even after background subtraction because
the driver’s location w.r.t. radar can change over time (e.g.,
body roaming due to acceleration or brake) during driving.
As a result, the vital signals will spread over multiple range
bins. Therefore, a motion compensation algorithm is devised
to eliminate the effect of large body movement. The loca-
tion change of the driver is first roughly compensated between
consecutive CIRs based on correlation of the CIR amplitude.
Then, the subtle motion within the range bin are estimated and
eliminated from the CIR phase utilizing a smoothing spline.
After motion compensation, the range-azimuth bins contain-
ing vital signals (also known as vital bins) will show periodic
pattern, and the CIR of these bins will be exported for further
vital signs estimation.

In the second stage, the vital signs estimation module esti-
mates drivers’ RR, HR, and HRV using the vital signals
exported by the previous module. To enable HRV analysis,
a heartbeat wave needs to be reconstructed to get the exact
time of each heartbeat. However, it is nontrivial to extract
the heartbeat signal from the compound vital signals includ-
ing both respiration and heartbeat movements. To accurately
recover the respiration as well as heartbeat signal, we optimize
the decomposition of vital signals in all vital bins with multiple
band-limited signals concurrently. And the extracted respi-
ration and heartbeat signals in all the vital bins are further
combined to give an estimate of the respiration and heartbeat
wave for RR, HR, and IBI estimation.

B. Signal Model

Our system is built upon an FMCW radar, which transmits
a signal with periodic linearly increasing frequency ramps,
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Fig. 3. FMCW radar system.

as shown in Fig. 3. A chirp is a single transmission and the
transmitted signal of the mth chirp can be expressed as

xm
T (τ ) = AT exp

{
−j

[
2π fcτ + π

B

Tc
τ 2

]}
(1)

where fc is the chirp starting frequency, Tc is the chirp dura-
tion, B is the bandwidth, and AT is the transmitting power.
The reflected signal xm

R (τ ) can be expressed as

xm
R (τ ) =

P∑
p=1

AR exp

{
−j

[
2π fc

(
τ − τp

)+ π
B

Tc

(
τ − τp

)2
]}

(2)

where AR is the amplitude of the receiving signal. τp stands for
the round-trip delay of pth reflecting path and can be denoted
as τp = (2dp/c), where dp is the distance between the reflect-
ing object and the device, c is the speed of light. P denotes
the total number of reflecting points in the environment.

Mixing the received signal with a replica of the transmitted
signal and following a low-pass filter, the channel information
at time instance m can be expressed as:

hm(τ ) =
P∑

p=1

A exp

{
−j

(
2π

Bτp

Tc
τ + 2π fcτp − π

B

Tc
τ 2

p

)}
(3)

where A denotes the channel gain. Note that τp is in nanosec-
ond for the short-range applications, and the term π(B/Tc)τ

2
p

is negligible, therefore, the hm(τ ) can be written as

hm(τ ) =
P∑

p=1

A exp

{
−j

(
2π

Bτp

Tc
τ + 2π fcτp

)}
(4)

which is a summation of P sinusoidal signals, whose frequency
fp � (Bτp/Tc) = (2Bdp/cTc) depends on the target’s dis-
tance. Besides, by leveraging multiple antennas of the chipset
to increase angle resolution, the channel information can be
further denoted as

hm(τ, l) =
P∑

p=1

A exp

{
−2π j

(
fpτ + fcτp + dl sin θ

λc

)}
(5)

where λc denotes the wavelength of the chirp, dl is the relative
distance introduced by the lth antenna, and θ is the azimuth
angle of the target. This channel information can be converted
to CIR by FFT of hm(τ, l), a.k.a Range-FFT, which can be
denoted as

hr,l(m) =
N∑

n=1

hm(n, l) exp
{
−j2π

rn

N

}
(6)

where hr,l(m) denotes the CIR of lth antenna element and rth
range tap r at time instance m. n denotes the sample index
after digitizing the hm(τ, l) over fast time τ , and N is the total
number of samples per chirp.

IV. VITAL MOTION EXTRACTION

In a real-world setting, extracting vital motions from the RF
signal is not trivial. Due to the presence of various clutters
in a car (e.g., chairs, metal objects, ceilings, etc.), it is hard
to filter the RF reflections off human body. Moreover, since
body motion will be involved during driving, the periodicity of
the reflected signal caused by vital motions can be corrupted,
complicating the detection of vital signals.

A. Digital Beamforming

To determine the range and the direction of the reflect-
ing objects, the system employs digital beamforming overall
antennas for each range tap. In this work, the Bartlett beam-
former [44] is used, where the coefficient of the lth antenna
toward azimuth angel θ is

sl(θ) = exp

(
−2π j

dl sin θ

λc

)
. (7)

The beamformed CIR corresponding to range r and azimuth
angle θ can be expressed as

h(r, θ, m) = sH(θ)hr,l(m)+ ε(m) (8)

where s(θ) = [s1(θ), s2(θ), . . . , sL(θ)]� is the steering vector
toward angle θ . hr,l(m) = [hr,1(m), hr,2(m), . . . , hr,L(m)]� is
the channel information vector at range tap r. ε(m) is the
additive white Gaussian noise assumed to be independent and
identically distributed (I.I.D) for different range-azimuth bins.

B. Clutter Removal

To locate the range-azimuth bins corresponding to the driver
and reduce the impact of reflections from static objects in
the vehicle, the system deploys a clutter removal algorithm to
subtract the CIR from the background. Note that the reflections
from the static object is reasonably assumed to be invariant
within a certain period of time, while the reflections from the
driver change over time due to human motion (including body
motion and motion caused by vital signals). The background
profile can be estimated by taking an average of the CIR over
slow-time, and the calibrated CIR can be denoted as

ĥ(r, θ, m) = h(r, θ, m)− 1

M

M∑
i=1

h(r, θ, m− i) (9)

where M is the number of samples used for clutter removal.
Fig. 4 shows the effect of the background cancelation, where
the raw CIR before clutter removal is shown in Fig. 4(a),
and the corresponding calibrated CIR after clutter removal is
shown in Fig. 4(b). As can be seen, clutter removal reduces
the background noise significantly.
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Fig. 4. Example of clutter removal (a) is the CIR amplitude before clutter
removal, where the reflections from the driver are submerged in the back-
ground reflections and (b) shows the CIR amplitude after clutter removal,
where the reflections corresponding to the driver can be easily identified.

Fig. 5. Example of the consecutive frame after clutter removal. The ground
truth is that there is a human subject sit at around 0.5-m away from device at
azimuth angle 0◦. The human subject sways the body back-and-forth during
the experiment. The amplitude of CIR measurement is shown every 15 s in
this example.

C. Motion Compensation

After extracting the dynamic CIR corresponding to the
driver, we would like to get the range-azimuth bins contributed
by the vital signals (also known as vital bins). The vital bins
can be easily identified by checking the periodicity of the
phase signal if the human subject stays stationary as stud-
ied in previous works [27]. However, the assumption of the
stationary human subject barely holds in the driving scenario.
To recover the periodic vital signals from the CIR involving
human motion, we design a two-step motion compensation
algorithm.

1) Large Body Movement Compensation: Note that when
there is a large body motion, the location of range-azimuth
bins corresponding to the human subject will change, as shown
in Fig. 5, where the human subject sit at around 0.5-m away
from device at azimuth angle 0◦. The human subject sways the
body back-and-forth, resulting in the change of reflecting loca-
tions. However, the profile of human reflections stays similar,
as shown in Fig. 5. Therefore, to remove body movement, the
2-D cross correlation [45] between consecutive CIRs is calcu-
lated. Then the CIR at each time instance is circularly shifted
to the point corresponding to the maximum cross correlation.

Fig. 6 shows the amplitude of 1-min CIR before and after
body movement compensation. For visualization, we plot the
CIR at azimuth angle 0◦ over range [0, 0.9] m. It is shown
that after the large body movement compensation, the bins

Fig. 6. Example of large body movement compensation. The upper fig-
ure shows 1-min CIR amplitude at azimuth angle 0◦ over range [0, 0.9] m,
where the distance between the human subject and device changes over time.
The lower figure shows the corresponding CIR amplitude after large body
movement compensation, where the range tap of the human subject stays the
same.

Fig. 7. Example of target detection (a) is the average of the CIR amplitude
over 1-min window after large body motion compensation and (b) shows bins
corresponding to the driver by using CFAR detector.

correspond to the human subject have been aligned. The 2-D
constant false alarm rate (CFAR) detector will be further
applied over the CIR after aligning the human subject, and
the candidate bins with the human subject can be selected as
shown in Fig. 7. Due to the limit of space, the details of the
CFAR detector are omitted here, and readers can refer to [46]
and the references therein for details.

2) Fine Movement Elimination: Although the candidate
range-azimuth bins corresponding to the human subject have
been aligned and selected in the first step, it is still hard to
locate those bins reflected by the chest with periodic vital sig-
nals. The reason is that the first step can only remove the
motion artifacts that is larger than the range-azimuth resolu-
tion, however, it cannot deal with the fine movements within
the range-azimuth resolution. Fig. 8(a) shows an example of
the unwrapped phase measurement of the candidate range-
azimuth bins after large body movement compensation in solid
lines, where the slow trend is caused by the fine movements.
To recover the periodicity of vital signals, we need to further
eliminate the impact of these fine movements.

Let yr,θ = [yr,θ (1), yr,θ (2), . . . , yr,θ (M)] to be the
unwrapped phase sequence corresponding to the range r and
the azimuth angle θ at the observation window, where M is
the total number of samples. [t1, t2, . . . , tM] denotes the time
corresponding to each observation. Note that the operation of
the fine movement elimination is performed within the same
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(a) (b) (c)

Fig. 8. Example of fine movement cancelation (a) shows the original unwrapped phase measurement from two different vital bins (in solid lines) and the
corresponding estimated motion (in dashed lines) (b) is the phase measurement after fine movement cancelation and (c) shows the ACF of the calibrated
phase measurement.

range-azimuth bin over slow time, for simplicity, subscripts
(r, θ) are omitted in the following analysis.

To remove the motion artifacts that have larger distance
change and lower frequency compared to the vital motions,
the estimation of the phase change caused by motion artifacts
can be obtained by

min
f̂

M∑
m=1

{
y(m)− f̂ (tm)

}2 + λ

∫
f̂
′′
(t)2 dt (10)

where λ ≥ 0 is a smoothing parameter. The second term eval-
uates the smoothness of a function. f̂ is the estimate of the
phase change caused by motion, defined as

f̂ (t) =
M∑

m=1

f̂ (tm)fm(t) (11)

where fm(t) are a set of spline basis function. In this work, we
use B-spline as the spline basis, and the detail of the definition
can be referred to [47]. Let P̂ = [f̂ (t1), . . . , f̂ (tM)]�, and the
roughness penalty has the form∫

f̂
′′
(t)2 dt = P̂�AP̂ (12)

where the elements of A are
∫

f
′′
i (t)f

′′
j (t) dt. Therefore, we can

rewrite (10) as

min
P̂

{
y− P̂

}�{
y− P̂

}
+ λP̂�AP̂ (13)

where the minimizer of (13) is obtained as

P̂∗ = (I+ λA)−1y. (14)

The estimation of motion can be obtained by

f̂ (t) = P̂∗�f(t) (15)

where f(t) is the vector form of the spline basis function. The
estimated motion artifacts can then be removed to get the clean
phase revealing the vital information. Fig. 8 illustrates the
effect of fine movement cancelation, where the dashed lines
in Fig. 8(a) show the estimated phase measurement caused by
body movement. Fig. 8(b) shows the phase measurement after
we remove the motion artifacts, where the periodicity caused
by vital signals appears. The above fine movement elimina-
tion is performed overall candidate bins selected by the CFAR
detector and the cleaned phase of each candidate bin is saved
for further analysis.

D. Vital Bin Identification

Note that after motion compensation in Section IV-C, the
phase information corresponding to the human chest show
periodicity due to the modulation of both respiration and heart-
beat, as shown in Fig. 8(b). To filter out the bins reflected by
other parts of the human body (i.e., bins dominated by motion),
we check the periodicity of the phase signals over slow time by
examining their auto-correlation function (ACF) [27]. The rea-
son is that when the phase measurement contains vital signals,
a peak can be observed at τ ∗ in its corresponding ACF, which
reveals the time duration of a breathing cycle [27]. Fig. 8(c)
shows an example of the ACF of the phase measurement cor-
responding to the human chest, where the time duration of a
breathing cycle is about 3.7 s, correspond to 16.1 RPM. We
check the periodicity overall candidate bins corresponding to
the human subject, and those bins whose peak located within
the range of normal human RR are identified as vital bins for
further analysis.

V. VITAL SIGNS ESTIMATION

The vital bins identified by the previous module can only
reflect the compound distance change caused by respiration
and heartbeat. To further estimate the vital signs, including
RR, HR, and HRV, we need to reconstruct the distance change
caused by respiration and heartbeat, respectively. For simplic-
ity, in the following analysis, we directly use the analog form
of the signal model.

Let y(t) = [y1(t), y2(t), . . . , yB(t)]T denote the vector of the
phase signals of all the B vital bins. Recall that the phase signal
after movement elimination is a mixture of vital signals, we
have

y(t) = sr(t)+ sh(t)+ n(t) (16)

where sr(t) and sh(t) denote the vector of respiration and
heartbeat signal, respectively, n(t) is the random phase off-
set introduced by noise, which is independent with the phase
change caused by vital signs. To decompose the phase and
get the estimate of vital signs, we leverage the following
properties.

1) Both respiration and heartbeat are quasi-periodic signals,
whose periodicity changes slightly over time.
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2) The periodicity of signals corresponding to respiration
and heartbeat should stay the same in different vital bins
since these signals are modulated by the same person.

3) The distance change caused by respiration and heartbeat
can be different in different parts of the human body due
to the physiological structure (i.e., the distance change
in different vital bins can be distinct) [48].

The phase signal, therefore, can be decom-
posed as an ensemble of band-limited signals,
denoted as {uk(t)}Kk=1, where for each component
uk(t) = [u{k,1}(t), u{k,2}(t), . . . , u{k,B}(t)]T , the decom-
posed signals w.r.t. all vital bins should be compact around
the same center frequency ωk (corresponding to the properties
1 and 2). Moreover, the distance change in different vital bins
should be optimized separately (corresponding to property 3).
The decomposition is modeled as [49]

min
uk,b∈U ,ωk∈�

α

K∑
k=1

B∑
b=1

∥∥∥∥∂t

[(
δ(t)+ j

π t

)
∗ uk,b(t)

]

× exp(−jωkt)

∥∥∥∥
2

2

+
B∑

b=1

∥∥∥∥∥yb(t)−
K∑

k=1

uk,b(t)

∥∥∥∥∥
2

2

(17)

where U = {u1,1, u1,2, . . . , u1,B, . . . , uK,B} and � =
{ω1, . . . , ωK} denote the set for all components and their cen-
ter frequencies, respectively. The first term in (17) represents
the bandwidth constraint, which is measured by the sum of the
L2 norm of the gradient of the analytic signal corresponding
to each component. The second term is the fidelity constraint,
which is evaluated by the quadratic penalty w.r.t. reconstruc-
tion. α is a parameter for balancing the bandwidth constraint
and data fidelity. The optimization problem in (17) can be
solved by alternatively updating U and � until convergence.

A. Minimization w.r.t. uk,b

To update the kth component for vital bin b, the subproblem
can be written as

uk,b(t) = arg min
uk,b(t)

α

∥∥∥∥∂t

[(
δ(t)+ j

π t

)
∗ uk,b(t)

]
exp(−jωkt)

∥∥∥∥
2

2

+
∥∥∥∥∥yb(t)−

K∑
i=1

ui,b(t)

∥∥∥∥∥
2

2

. (18)

By using the Parseval theorem, the problem is equivalent to

�k,b(ω) = arg min
�k,b(ω)

α
∥∥jω

[
(1+ sgn(ω + ωk))�k,b(ω + ωk)

]∥∥2
2

+
∥∥∥∥∥†b(ω)−

K∑
i=1

�i,b(ω)

∥∥∥∥∥
2

2

(19)

where �k,b(ω) and †b(ω) are the Fourier transfer of uk,b(t)
and yb(t), respectively. After performing a change of variables
ω← ω − ωk in the first term, and using the Hermition sym-
metry of the real signals in the spectrum for the second term,

the above problem can be rewritten as

�k,b(ω) = arg min
�k,b(ω)

∫ ∞
0

4α(ω − ωk)
2
∣∣�k,b(ω)

∣∣2

+ 2

∣∣∣∣∣†b(ω)−
K∑

i=1

�i,b(ω)

∣∣∣∣∣
2

dω. (20)

The updated solution can be expressed as

�k,b(ω) = †b(ω)−∑
i,i�=k �i,b(ω)

1+ 2α(ω − ωk)
2

. (21)

B. Minimization w.r.t. ωk

The center frequencies ωk only appear in the bandwidth
constraint and thus the updating function can be written as

ωk = arg min
ωk

B∑
b=1

∥∥∥∥∂t

[(
δ(t)+ j

π t

)
∗ uk,b(t)

]
exp(−jωkt)

∥∥∥∥
2

2
.

(22)

As before, we find the optimum in Fourier domain, and we
have

ωk = arg min
ωk

B∑
b=1

∫ ∞
0

(ω − ωk)
2|�k,b(ω)|2dω. (23)

The minimizer of the above problem is

ωk =
∑

b

∫∞
0 ω

∣∣�k,b(ω)
∣∣2

dω∑
b

∫∞
0

∣∣�k,b(ω)
∣∣2

dω
. (24)

Fig. 9 shows an example of vital signals decomposition,
where the time and frequency domain of the original phase as
well as the decomposition components are shown in Fig. 9(a)
and (b), respectively. The information of three different vital
bins are distinguished by the color of lines, and it is clear to
see that although the distance change of different vital bins is
distinct, as shown in Fig. 9(a), the periodicity of the signal of
each component stays the same, as shown in Fig. 9(b). In other
words, components corresponding to vital signals are perfectly
aligned overall vital bins, e.g., the first component represents
the distinct displacement caused by respiration over different
vital bins, and the second component represents the distinct
displacement caused by heartbeat over different vital bins.
The residue of the decomposition contains noise including car
vibrations, as shown in Fig. 9.

C. Vital Signals Reconstruction

To further reduce the noise impact, we reconstruct the
vital signals by combining the signals of all vital bins using
empirical mean, i.e.,sr(t) = (1/B)

∑
b ui,b(t) and sh(t) =

(1/B)
∑

b uj,b(t), where the ith and jth components correspond
to the respiration signal and heartbeat signal, respectively. The
RR is estimated by finding the first peak of the ACF of the
estimated respiration signal, as shown in Fig. 8(c). Besides,
the FFT is further performed on the estimated heartbeat sig-
nal to get the estimation of HR. Moreover, the exact time of
each heartbeat can be further extracted from the reconstructed
heartbeat wave to estimate the IBI.
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Fig. 9. Example of phase decomposition of three vital bins, where the information in different vital bins are distinguished by the color of lines (a) is
the decomposition result in the time domain, where the first subfigure shows the phase measurement after motion cancelation. The respiration and heartbeat
component are shown in the second and the third subfigures, respectively. The fourth subfigure shows the decomposition residue. (b) Shows the corresponding
spectrum of each component.

(a) (c)(b)

Fig. 10. Example of estimated result versus ground truth. (a) Shows the RR and HR estimation result. (b) Shows the estimated heartbeat signal compared
with the ECG sensor result, where the ground truth from ECG sensor is marked as vertical dashed lines. (c) Show the estimated IBI compared with ground
truth from the ECG sensor.

Fig. 11. Experiment setup. (a) Hardware. (b) Device mount on windshield.
(c) Device under steering wheel.

Fig. 10 shows the estimated vital signs versus their ground
truths of a 2-min data set, where a 1-min window is employed

TABLE I
PARAMETERS USED

for the time-frequency domain transform (i.e., ACF and FFT).
The estimated RR and HR are shown in solid lines in
Fig. 10(a), which match with the ground truth, shown as
dashed lines in Fig. 10(a). Fig. 10(b) shows a segment of
the estimated heartbeat wave, and the ground truth of the
exact time of each heartbeat is marked as vertical dashed
lines. The estimated IBIs of the whole data and their cor-
responding ground truth are shown in Fig. 10(c). Clearly,
the proposed system achieves high accuracy in vital signs
estimation, and the root-mean-squared-error (RMSE) of IBI
estimation in Fig. 10(c) is 40.77 ms, corresponding to the
96% relative accuracy.

VI. EXPERIMENT EVALUATION

In this section, extensive experiments are performed to eval-
uate the performance of the proposed system. We compare
the performance with the state-of-art work under different
experimental settings.
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(a) (b) (c)

Fig. 12. Comparison of vital sign estimation performance between proposed method and V2iFi. (a) CDF of RR estimation error. (b) CDF of HR estimation
error. (c) CDF of IBI estimation error.

TABLE II
INFORMATION OF THE PARTICIPANTS

A. Methodology

We conduct experiments using a COTS mmWave radar,
IWR1843BOOST [50], as shown in Fig. 11(a), where the
two Tx antennas and four Rx antennas are configured in
TDM-MIMO mode [51]. The device can achieve a theoret-
ical azimuth resolution of 15◦, and the Field-of-View (FoV) is
100◦ in the horizontal plane, which is large enough to cover
the driver. The parameters corresponding to the FMCW radar
setting are listed in Table I. The ground truth of heartbeat
is captured by a commercial ECG sensor [52], as shown in
Fig. 11(a), and the ground truth of breathing is measured by
a respiration belt [53].

We recruit four volunteers (two males and two females)
to help on the data collection including two different device
locations as shown in Fig. 11(b) and (c). All of the partici-
pants do not have any cardiac history, and more information
about the testers are shown in Table II. The driving route is
a cycle of 50.7 miles, including local routes and highway,
where the road conditions can be referred to Maryland’s GIS
Data Set [54]. During the data collection, the driver is driving
following their own habits with no further constraints, and a
copilot is responsible for collecting data.1

To further evaluate the performance of the proposed system,
we compare it with the state-of-art work, V2iFi [56], which
estimates driver’s vital signs using the CIR of a UWB radar.
With the assumption that the distance change caused by vital
signals are identical in different vital bins, V2iFi estimates the
respiration and heartbeat signal by multisequence variational
mode decomposition (MS-VMD). Note that V2iFi cannot esti-
mate vital signs when drivers have body motion. For a fair
comparison, motion compensation proposed in Section IV-C
is also applied to V2iFi to remove the motion artifacts before
estimating the vital signals.

1The data were obtained from the exclusive data from Origin Wireless [55].

Fig. 13. Bland-Altman plot for the proposed method.

Fig. 14. Experiment path.

B. Overall Performance

Fig. 12 depicts the overall performance of the proposed
system and V2iFi. The experiments consist of road tests with
different pavement conditions, device locations, as well as the
controlled experiments with different motion types, including
stationary, head motion, hand motion, and back-and-forth torso
motion for four different users. Fig. 12(a) plots the empirical
cumulative distribution function (CDF) of absolute RR esti-
mation error, where the 90-percentile error for the proposed
system and V2iFi are 0.64 and 0.86 RPM, respectively. The
performance improvement is more significant for HR estima-
tion, where the proposed system achieves a median error of
0.82 BPM, and the median error of V2iFi is 5.12 BPM, as
shown in Fig. 12(b). Fig. 12(c) shows the performance of the
IBI estimation for the two systems, where V2iFi yields about
84 ms medium error, while the proposed system achieves a
medium error of 46 ms, outperforming V2iFi by about 45.2%.
The Bland–Altman plot is shown in Fig. 13, where the solid
line shows the mean of the difference between the estimation
and the ground truth, and the dashed lines show the ±1.96
times of standard deviation of the difference. It is obvious that
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(a) (b) (c)

Fig. 15. Vital sign estimation performance versus pavement condition. (a) CDF of RR estimation error. (b) CDF of HR estimation error. (c) CDF of IBI
estimation error.

(a) (b) (c)

Fig. 16. Vital sign estimation performance versus device location. (a) CDF of RR estimation error. (b) CDF of HR estimation error. (c) CDF of IBI estimation
error.

our estimation is nearly unbiased compared with the ground
truth.

C. Impact of Road Condition

In this section, we investigate the effect of road condition on
the estimation accuracy. Note that the road/pavement condition
is assessed by several factors including rutting, friction, struc-
tural cracking density, etc. The better the pavement condition
is, the smoother the road is, and less body motion induced by
uneven road will be involved.2 The test route shown in Fig. 14
roughly includes three different pavement conditions, i.e., Very
Good, Good, and Fair, and the length of the road correspond-
ing to Very Good, Good, and Fair condition is about 17, 16,
and 18 mile, respectively, according to Maryland’s GIS Data
Set [54]. During the data collection, the copilot saves data
every 2 min and records the corresponding pavement condi-
tion at the same time. On average, every round of road test
contains about 18 sets of data.

As expected, the performance degrades with the deterio-
ration of the pavement condition, as shown in Fig. 15. The
median error of the proposed method in terms of RR, HR, and
IBI estimations are 0.18 RPM, 0.45 BPM, and 32 ms, respec-
tively, when the pavement condition is Very Good. The median
error increase to 0.19 RPM, 1.64 BPM, and 50 ms for the RR,
HR, and IBI estimations when the pavement condition is Fair.
Since the distance change caused by respiration is larger than
heartbeat, which means a higher signal-to-noise-ratio (SNR)
of the RR estimation, we observe a slighter degradation in
RR estimation compared with HR and IBI estimations.

Besides, the proposed method outperforms V2iFi in all three
vital signs measurement, and the performance gap increases

2The case study of the impact of the uneven road can be referred to the
Appendix.

with the deterioration of the pavement condition. In specific,
the median error of V2iFi in terms of RR, HR, and IBI estima-
tions are 0.23 RPM, 2.34 BPM, and 61 ms, respectively, when
the pavement condition is Very Good, which correspond to a
relative increment of 17.8%, 420.0%, and 90.6% compared
with the proposed method. The performance gap in terms of
median error w.r.t. RR, HR, and IBI estimation increases to
42.1%, 620.7%, and 142.0% when the pavement condition is
Fair. The main reason for the performance gap between V2iFi
and the proposed method is that V2iFi assumes the same dis-
tance change of vital signals in different vital bins, which is
hard to meet when the SNR of the signal is small. However,
the proposed system only assumes the same periodicity of
vital signs in different vital bins when reconstructing vital sig-
nals, and the distance change in different vital bins are jointly
optimized, which is more robust to the noise.

D. Impact of device location

In this study, we investigate the impact of device location
on the vital signs estimation. The radar is placed at the top
of windshield (denoted as “up”), as shown in Fig. 11(b), and
under the steering wheel (denoted as “down”), as shown in
Fig. 11(c). Fig. 16 plots the CDF of the absolute error of RR,
HR, and IBI estimations, where the red lines correspond to
the “down” setting, and the blue lines correspond to the “up”
setting.

It is shown that the “down” setting achieves better
performance for all estimations. In specific, for the proposed
system, the median error for RR, HR, and IBI estimation
are 0.2 RPM, 0.65 BPM, and 38 ms, respectively, for the
“down” setting. However, it increases to 0.28 RPM, 1.91
BPM, and 56 ms for the “up” setting, corresponding to 40%,
193.85%, and 47.37% performance degradation, respectively.
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(a) (b) (c)

Fig. 17. Vital sign estimation performance versus motion type. (a) CDF of RR estimation error. (b) CDF of HR estimation error. (c) CDF of IBI estimation
error.

We observe the similar phenomenon in V2iFi, where the
median error for all the three metrics increases when the device
is place as the “up” setting, as shown in dashed lines in Fig. 16.
The reason is that when the device is mounted on the wind-
shield, the vital bins mainly correspond to the chest, whereas,
for the “down” setting, the vital bins mainly correspond to
the lower chest and the abdomen. Note that for the same sce-
nario (e.g., car decelerates due to brake), a severer motion will
be involved in the upper chest than the abdomen, therefore,
the SNR of vital signals for the “down” setting is larger than
the “up” setting. However, comparing to the proposed system,
V2iFi yields a larger estimation error for all the three metrics,
because it is less robust to noise as discussed in Section VI-C.

E. Impact of Motion Type

As driving involves different kinds of motion of head, hand,
and body when looking at the side mirror, or controlling the
steering wheel, etc., to better understand the impact of dif-
ferent motion types, we conduct controlled experiments and
analyze their corresponding impact in this section, as shown
in Fig. 17. During the experiment, drivers are asked to con-
tinuously perform a specific type of motion in a parked car,
including sitting stationary, head motion to check the surround-
ings, hand motion to operate steering wheel, and randomly
sway their body back-and-forth to emulate the body motion
caused by acceleration and deceleration. Every data collection
lasts for 2 min for both “up” setting and “down” setting as
shown in Fig. 11. In total, we have 32 sets of data for analysis.

Fig. 17(a) shows the CDF of RR estimation error with
different motion types, where we can see that the median esti-
mation error when driver performs head motion is nearly the
same as the stationary case. The performance slightly degrades
when the driver performs hand motion, where the median error
increase from 0.11 to 0.12 RPM compare to the stationary set-
ting. However, for the large back-and-forth motion, we observe
a severe performance degradation, and its median error of RR
estimation is 0.19 RPM, 72.73% worse than the stationary
setting. Similar performance degradation can be observed in
terms of the HR and IBI estimation.

Fig. 17(b) shows that the median error of HR estimation
increases from 0.35 BPM corresponding to the stationary set-
ting to 0.68 and 0.75 BPM when the driver performs hand and
back-and-forth motion, respectively. As for IBI estimation, the
median error when the driver performs sitting stationary, head

Fig. 18. Impact of user heterogeneity.

motion, hand motion, and random back-and-forth motion are
37, 41, 45, and 68 ms, respectively, as shown in Fig. 17(c).

We also plot the estimation performance of V2iFi in dashed
lines in Fig. 17, where the similar performance degradation
can be observed. However, we can see that V2iFi is more vul-
nerable to motion artifacts, and the performance degradation
of hand and back-and-forth motion is more severe compared
to the proposed system. In specific, we can see that the median
error of HR estimation for the back-and-forth setting is larger
than 10 BPM, which is almost useless for the driver’s HR
estimation.

F. Impact of User Heterogeneity

In this part, we study the impact of the user heterogeneity
on the performance. Fig. 18 summarizes the absolute IBI esti-
mation error of four drivers using the data of all the settings
above. Clearly, the proposed method demonstrates different
IBI estimation errors for different users, where the medium
error varies from 41 to 62 ms, as shown in blue and red boxes
in Fig. 18. The difference in error distribution can be caused
by various factors, such as different driving habits and heart-
beat strength over individuals. Besides, the performance of
V2iFi is shown in cyan and magenta boxes for comparison. It
is obvious that the proposed method outperforms V2iFi for all
the four users, which is benefited from its dedicated design to
resist motion artifacts.

G. Impact of Window Length on HRV Calculation

In this part, we investigate the impact of the window length
on HRV calculation. Known that the HRV metrics can be
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(a) (b) (c) (d)

Fig. 19. HRV metrics with different time window. (a) Mean IBI. (b) SDRR. (c) RMSSD. (d) pNN50.

derived from the IBI sequence [57], Fig. 19 shows four differ-
ent commonly used HRV metrics with window length ranging
from 15 to 120 s. The mean of IBI and the standard deviation
of the IBIs (SDRR) under different time window are shown
in Fig. 19(a) and (b), respectively. The root-mean-square-
of-successive differences (RMSSDs) is shown in Fig. 19(c),
which can be calculated by

RMSSD =
√√√√ 1

NIBI − 1

NIBI∑
i=2

(IBI(i)− IBI(i− 1))2 (25)

where NIBI is the total number of IBIs in the given time
window. Fig. 19(d) shows the percentage of successive IBI
that differ by more than 50 ms (pNN50), which can be
calculated by

pNN50 =
∑NIBI

i=2 1{(IBI(i)− IBI(i− 1)) > 50 ms}
NIBI

(26)

where 1{·} is the indicator function.
As shown in Fig. 19(a), the mean of IBI barely changes

over the window length. However, the other three metrics
(i.e., SDRR, RMSSD, and pNN50) increase with the win-
dow length for both estimation and ground truth, as shown
in Fig. 19(b)–(d). Furthermore, the estimation error of SDRR
increases from 6.5 to 8.7 ms when the window length increases
from 15 to 120 s. Similar performance/trend can be observed
in RMSSD, where the estimation error increases from 1.5 to
4.1 ms when the window length increases from 15 to 120 s.

VII. DISCUSSION AND FUTURE WORK

With the miniaturization of antennas and chips, mmWave
has been widely used in automotive radar system for ambi-
ent sensing, and our work shows that it can also be applied
for in-vehicle sensing to detect driver’s vital signals. In addi-
tion, existing work [58] has shown the feasibility of driver’s
drowsiness detection using vital signs, such as RR and HR
estimation with the estimation errors of 5% and 2.82%, respec-
tively. While in our system, the estimation error of RR and HR
estimation are 0.83% and 1.06%, respectively, which is more
accurate than [58]. Based on the estimated RR and HR, it is
possible to detect the abnormal conditions of the driver, such
as the tendency of road rage and driver’s drowsiness, because it
has been shown that the RMSSD increases by 10 ms when the
human subject changes from neutral to angry [59], and the RR
and HR decrease from wakefulness and extreme drowsiness by
3.5 [60] and 8 BPM [3], respectively. However, different appli-
cations may expect different acceptable error ranges, which is

also related to the post-processing of a particular application.
It is an interesting topic to explore such tolerance levels for
our future research.

VIII. CONCLUSION

In this article, we propose a novel system that can accu-
rately detect driver’s vital signs in the presence of practical
driving motions using the reflections of RF signals off the
human subject only. To locate the reflections from the driver,
the system first performs conventional beamforming to get the
CIR with different range-azimuth bins, followed by a clutter
removal module to remove the reflection from the background.
Then, the 2-D correlation between different CIR samples have
been used to eliminate large displacement caused by body
roaming. Finer motion artifacts are further removed by the
smoothing spline, which can accurate estimate motion artifacts
without dedicated choose of hyper-parameter as in polynomial
fitting. The displacement caused by respiration and heartbeat
are then estimated by jointly optimizing the decomposition of
vital signals in all vital bins, and the RR, HR and IBI can
be extracted from the reconstructed respiration and heartbeat
wave. We prototype our system using a commercial mmWave
radio, and conduct experiments in the real driving scenario to
evaluate the performance. The experimental results show that
the proposed system can estimate vital signs accurately with
driving motion artifacts, outperforming the state-of-art works.

APPENDIX

In this part, we use a specific case to study the impact of
the car vibration. During driving, the car vibrates due to the
running engine, the friction between tires and roads, as well
as bumps/pits in the road. To measure the vibration of the car,
we fix an accelerometer at driver’s seat during the driving test.
Figs. 20–25 show the accelerometer readings and the proce-
dure of vital sign extraction. During the data collection, the
car is running on MD495, where the corresponding pavement
condition is “Fair.”

In specific, Fig. 20(a) shows the accelerometer readings in
the time domain, where Acc-X, Acc-Y, and Acc-Z denote the
acceleration in range, azimuth, and elevation domain. The cor-
responding spectrum and the CDF of the spectrum energy are
shown in Fig. 20(b). It is clear to see that the major frequency
of the car vibration is much larger than the normal range of
vital signs. However, it does not mean that the car vibration
will not influence the vital signs estimation. From observation,
the car vibration can be roughly classified into two types, i.e.,
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Fig. 20. Accelerometer signal at the driver’s seat. (a) Time domain.
(b) Frequency domain.

(a)

(b) (c)

Fig. 21. Example of the motion compensation w.r.t. bins failing the periodic
check. (a) Original phase. (b) Phase after motion compensation. (c) ACF of
the phase after motion compensation.

the abrupt large acceleration caused by bumps/pits in the road,
corresponding to the case when t ∈ [40 50] in Fig. 20(a), and
the normal car vibration caused by running engine and fric-
tion between tires and roads, corresponding to the case when
t ∈ [0 40] in Fig. 20(a).

Here, we need to clarify that the car vibration and human
motion are two different notions. The reason that the car vibra-
tion may impact the estimation result is that the vibration may
introduce body motion. When there is a pit/bump in the road
(e.g., the accelerometer readings at around t ∈ [40 50]), it may
cause large body motion, which can corrupt the vital signals
at some range-azimuth bins. However, note that different parts
of human body have a different response to the abrupt large
vibration, as shown in different lines in Fig. 22(a). Besides,
the distance change caused by vital signals varies with differ-
ent parts of the human body, as discussed in Section V. As
a result, the SINR of the vital signals is different in distinct
range-azimuth bins.

Fig. 21 shows the original phase and the signal after motion
compensation in three different range-azimuth bins that fail the
periodicity check. Meanwhile, Fig. 22 shows the original phase
and the signal after motion compensation in three different
range-azimuth bins that pass the periodicity check.3 We can
see that the large abrupt acceleration change has caused large

3In our system, we use the property of the ACF peak, including peak height,
peak width as well as peak prominence to check the periodicity, as discussed
in Section IV-D. The peak that passes the periodicity check is marked as a
triangle as shown in Fig. 22(c).

(a)

(b) (c)

Fig. 22. Example of the motion compensation w.r.t. bins passing the periodic
check. (a) Original phase. (b) Phase after motion compensation. (c) ACF of
the phase after motion compensation.

Fig. 23. Example of phase measurement decomposition. (a) Time domain.
(b) Frequency domain.

body motion in all the six bins, as shown in Figs. 21(a)
and 22(a). However, for the bins in Fig. 22, the condition of the
phase change caused by vital signals is still good enough for
vital signs extraction. The corresponding phase decomposition
result is shown in Fig. 23. Fig. 24 shows the reconstructed res-
piration and heartbeat signals, where all the bins that pass the
periodicity check (including but not limited to the three bins
shown in Fig. 22) have been used, as discussed in Section
V-C. Fig. 25 gives the estimated vital signs as well as their
ground truths for the whole 2-min test, where we can see that
even though there are large acceleration changes caused by the
uneven road during the data collection, the estimation results
match the ground truth.
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Fig. 24. Illustration of retrieved vital signals. (a) Estimated respiration signal. (b) ACF of the respiration signal. (c) Estimated heartbeat signal. (d) Spectrum
of heartbeat signal.

Fig. 25. Example of estimated result versus ground truth. (a) RR and HR
estimation. (b) IBI estimation.

Besides the large abrupt acceleration change caused by the
uneven road, the running engine as well as the friction between
tires and roads causes continuous minute car vibrations, as
shown in Fig. 20(a) when t ∈ [0 40]. However, this kind
of car vibration has a smaller impact on the vital signals, as
shown in Fig. 22(a) when t ∈ [0 40]. For the given testing
route, we do not observe too much difference on this kind
of vibration on three different pavement conditions. However,
the large abrupt vibration happens more frequently on the road
with “Fair” condition than the other two types. This matches
the analysis of the impact of pavement condition on the system
performance as discussed in Section VI-C.
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