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ABSTRACT

In-car child presence detection (CPD) has gained worldwide
attention due to increased child deaths reported yearly when
they are left unattended in a car. Existing solutions usually
require dedicated sensors and are being surpassed by WiFi-
based CPD because the latter can provide broader coverage
and can reuse the in-car WiFi devices. However, the exist-
ing WiFi-based CPD solutions are not robust and may suf-
fer from miss detection due to the very weak breathing of a
young child and high false alarms under unfavorable environ-
mental conditions. In this paper, we propose a WiFi-based
robust CPD system consisting of a motion and breathing de-
tector. To improve breathing detection, we propose to treat
the intermediate spectrogram for breathing estimation as im-
ages and apply image enhancement techniques followed by
effective false alarm removal. Extensive experimental results
have confirmed the robustness of the proposed system with a
99% detection accuracy and 3% false alarm rate.

Index Terms— WiFi sensing, channel state information
(CSI), child presence detection (CPD)

1. INTRODUCTION

In-car child presence detection (CPD) has gained attention
from all over the world due to an increasing number of heat-
stroke child deaths/hypothermia cases when they are left unat-
tended inside a car. Earlier CPD solutions mainly utilize var-
ious types of sensor measurements such as those from op-
tical/weight/heat/pressure sensors [1], capacitive sensors [2],
and PIR sensors [3]. However, these approaches usually can
only provide limited coverage while suffering from a high
false alarm rate. Camera-based CPD systems have better de-
tection accuracy, but they heavily rely on the quality of the
captured images/videos and are thus vulnerable to poor light
conditions [4], [5]. Recent years have witnessed more in-
vehicle sensing systems based on radio frequency (RF) sig-
nals, such as vital sign detection [6], [7] because RF-based
sensing is less privacy intrusive and easy to install [8–12].
But these systems mostly rely on mmWave signals with lim-
ited coverage only in their field of view, and mmWave is not
readily available in most vehicles today either.

This research work is partly supported by Key Bridge Foundation.

With the ubiquitous deployment of WiFi, more and more
vehicles today already/will have WiFi equipment, and thus
CPD can reuse the in-car WiFi at no additional cost [13], [14].
A highly accurate and fast-responsive WiFi-based CPD has
been proposed in [15], [16] that can offer a large coverage
with no calibration efforts. However, its performance has
not been fully tested against unfavorable environmental con-
ditions, such as when there exists interfering motion from
around the car or under bad weather (e.g., heavy rain), which
are practical but non-trivial challenges.

To improve the CPD performance resilient to aforemen-
tioned environmental interference, we proposed a robust CPD
solution with enhanced vital sign (breathing) detection. We
first model the channel state information (CSI) based on sta-
tistical electromagnetic (EM) wave theory and utilize an auto-
correlation function (ACF) of the CSI to fully leverage all the
multipath components [15, 17–19]. We then define a motion
detector with a statistic metric to quantify the motion inten-
sity and further define a breathing detector with maximal ra-
tio combining (MRC)-based subcarrier selection to boost the
signal-to-noise (SNR) ratio of the ACF, where the weight is
the motion intensity in each subcarrier. Even though the CPD
solution [15] can achieve good detection in many test cases,
it will fail in some cases with very subtle breathing move-
ment, especially under outside motion interference, and one
such example is shown in Fig. 1 where Fig. 1 (a) depicts the
corrupted ACF due to the outside heavy rain while a child is
sleeping (breathing without any motion) inside the car.

Considering that the breathing detection is essentially
equivalent to identifying the pattern (horizontal breathing
traces) from the ACF spectrogram, we propose to treat the
ACF spectrogram as an image, and further improve its SNR
with image enhancement techniques and an enhanced ACF
spectrogram example is shown in Fig. 1 (b). While en-
hancement improves the detection of weak breathing under
interference, it may also increase the false alarm rates as the
non-breathing spectrogram after enhancement may also re-
sult in breathing-like patterns, and thus we leverage a zero
crossing rate (ZCR) and Dynamic Time Warping (DTW) dis-
tance measures to remove such false alarms. To validate the
performance of the proposed system, extensive experiments
are conducted using a baby doll and real babies under chal-
lenging conditions, such as with heavy rain, wind, and whenIC
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(b) Enhanced ACF

Fig. 1. Improved ACF using the proposed method.

the car is parked in a busy parking lot. The proposed CPD
system demonstrates a 99% detection accuracy and about 3%
false alarm rate with challenging data.

The rest of the paper is organized as follows. Section 2
introduces the CSI multi-path model. The system design is
presented in Section 3 followed by the experimental results
and evaluation in Section 4. Section 5 concludes the paper.

2. CSI MODEL

In an environment with rich multi-path propagation, such
as inside a car, WiFi signals can be reflected, scattered, and
diffracted by human bodies, seats, floors, or vehicle bodies
before arriving at the receiver. Due to the above effect, hun-
dreds of multi-path components (MPC) are superimposed at
the receiver. Dynamic objects like the human body may cre-
ate time-variant MPC while static targets create time-invariant
MPC. Even a static human may create time-variant MPC as
WiFi is sensitive to the periodic abdomen or chest movement
due to breathing. Considering the multi-path effect, the CSI
estimated over a subcarrier with frequency f at time t from
the received signal can be modeled as

H(t, f) =
∑

m∈Ωs

am(t)e−j2πfτm(t)

+
∑
n∈Ωd

an(t)e
−j2πfτn(t) + n(t, f), (1)

where n(t, f) is the measurement noise, am(t), an(t) are
the complex amplitudes, τm, τn are the time delay of the
m and n-th multipath components, and Ωs, Ωd denotes the
time-invariant and time-variant multi-path components, re-
spectively. Without loss of generality, the static multi-path
components’ complex amplitude and time delay can be as-
sumed as a constant, and thus

H(t, f) = Hs(f) +
∑
n∈Ωd

an(t)e
−j2πfτn(t) + n(t, f). (2)

In practice, the CSI phase can be corrupted by time and
frequency synchronization offsets. Thus, in our statistical
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Fig. 2. Robust CPD system design

model, we consider the power response of H(t, f) which can
be given as

G(t, f) = |H(t, f)|2 = µ(t, f) + ϵ(t, f), (3)

where µ(t, f) = |Hs(f) +
∑

n∈Ωd
an(t)e

−j2πfτn(t)|2 and
ϵ(t, f) is the power of the measurement noise n(t, f) which
can be modeled as additive white Gaussian noise (AWGN)
[17].

3. SYSTEM DESIGN

The proposed CPD system consists of two detector modules:
a motion detector and a breathing detector. As illustrated in
Fig. 2, the extracted CSI is first fed into the motion detector to
detect a child who is awake and may have substantial motion.
If there is not a strong enough motion detected, e.g., when
a child falls asleep and keeps stationary, the CSI is further
fed into the breathing detector to detect potential breathing
signals. CPD is triggered if either of the two detectors detects
the child’s presence by motion or breathing.

3.1. Motion Detector

The motion detector evaluates the motion intensity through
motion statistics which is first introduced in our earlier work
[17] for indoor motion sensing. It is found that the ACF of the
CSI power can well characterize the motion of the surround-
ing dynamic scatterers, as given by

ρG(τ, f) =
cov[G(t, f), G(t+ τ, f)]

var[G(t, f)]
(4)

=
E2

d(f)

E2
d(f) + σ2(f)

ρµ(τ, f) +
σ2(f)

E2
d(f) + σ2(f)

δ(τ),

(5)

where E2
d(f) is the power of dynamic scatters, ρµ(τ, f) is

auto-correlation of µ(t, f), σ2(f) is the variance of ϵ(t, f),
and δ(τ) is the Dirac delta function. When τ → 0, if there is
a motion, ρG(τ, f) → E2

d(f)

E2
d(f)+σ2(f)

> 0; if there is no motion,
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ρG(τ, f) = 0 since E2
d(f) = 0. Thus, limτ→0 ρG(τ, f) can

be considered as good statistic to measure motion. In practise,
limτ→0 ρG(τ, f) can be approximated by ρG(τ = 1/Fs, f),
where Fs is the sampling frequency, and the motion statis-
tics is defined as ψ = 1

F

∑F
f=1 ρG(τ = 1/Fs, f), where F

denote the set of all sub-carriers.

3.2. Breathing Detector

Since the breathing motion is mainly caused by the periodic
chest and abdomen movement, it can be detected by estimat-
ing the periodicity from the CSI or the ACF in (5), which also
exhibits periodic breathing patterns [19]. As the breathing
motion of a child is more subtle than that of an adult, a max-
imal ratio combining (MRC)-based approach can be adopted
to boost the SNR of the ACF, where the top N subcarriers
based on the largest motion statistics are selected, and the
boosted ACF can be expressed as

ρ̂c(τ) =

N∑
i=1

ρG(τ = 1/Fs, fi)ρG(τ, fi), (6)

and the breathing rate can be estimated by fB = 60/τ̂ (BPM),
where τ̂ corresponds to the time lag of the first peak in ρ̂c(τ).

3.2.1. Enhancement on ACF

Although [15] has utilized the boosted ACF ρ̂c(τ) to detect
breathing for CPD, we notice miss detection when the ACF
is corrupted due to interference motion, as seen from an ex-
ample of the ACF at a certain time instance in Fig. 3(a),
which corresponds to a static child breathing quietly inside
a car while raining outside.

Since the breathing detection is, in essence, to identify
the peaks in ρ̂c(τ), if we have observed the ACF ρ̂c(τ) in a
certain time window, it boils down to identifying the pattern,
i.e., horizontal breathing traces from the ACF. Thus, we pro-
pose to view the ACF spectrogram as a 2D image and further
improve its SNR with enhancement techniques to restore the
breathing traces corrupted by noise/interference.

First, a median filter in the time domain can be applied
to remove high-frequency components. Then, edge detec-
tion/enhancement can be used in the vertical direction to en-
hance the horizontal stripes, which can reflect the breathing
periodicity. In this paper, we utilize a 1D column filter. For a
given time instance t, the enhanced ACF ρ̂E(τ) can be given
as, ρ̂E(τ) = ρ̂c(τ) + kρ̂′c(τ), where ρ̂′c(τ) is the first deriva-
tive of the boosted ACF ρ̂c(τ) in (6) and k is a weighting
factor. The enhanced ACF with more prominent peaks in the
example of Fig. 3(a) is shown in Fig. 3(b).

After peak enhancement, histogram equalization [20] can
be further applied to the ACF to adjust and enhance the con-
trast of the spectrogram for better identification. An example
with both enhancements to improve the ACF spectrum is as
depicted in Fig. 1.
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Fig. 3. Example of (a) corrupted ACF, and (b) ACF after peak
enhancement.
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Fig. 4. Fallacious periodic pattern

3.2.2. False alarm removal

Even though motions outside a car may not create high
enough motion statistics and trigger motion detection, some
such motion can illustrate periodic patterns in the ACF even
when the car is empty, which may even be further magnified
after the enhancement step and trigger false breathing detec-
tion. To mitigate these false alarms, we propose two metrics
to evaluate whether the breathing detection is true positive or
not.

Zero Crossing Rate (ZCR): As can be seen in Fig. 3(b),
at a certain time instant, if there is a breathing signal present,
the ACF will exhibit a clear periodic pattern; if there is no
breathing, the noise term will dominate the ACF and we can
observe many oscillations in ρ̂c(τ), which result in a higher
number of zero crossings [21]. Therefore, we use the ZCR as
a metric to remove the false breathing detection. If the ZCR is
higher than a predefined threshold, the system will not trigger
the CPD indicator.

DTW distance: As depicted in Fig. 4, for a given time
instant, ACF may exhibit fallacious breathing-like patterns
which cannot be removed by checking ZCR. To eliminate this
shortcoming, we compare the ACF with a template, which can
be predefined based on the average breathing rate of a normal
child.

Since the ACF can be out of sync with the template due to
phase shift or distortion in time, we use the DTW distance to
minimize such effects [22]. When the ACF and the breathing
template are similar, i.e., the ACF is more likely from a true
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Fig. 5. Detection under different conditions with and without
applying the enhancement.

breathing signal, the DTW distance has a smaller value. Thus,
the proposed CPD system does not trigger any detection if the
DTW distance is higher than a predefined threshold.

After the ACF enhancement and false alarm removal, the
proposed CPD system proceeds to peak detection and the
breathing rate can be calculated using the average interval of
two adjacent peaks.

4. EXPERIMENTAL RESULTS

We implemented our system using a commercial dual-band
WiFi module operating in both 2.4GHz and 5GHz bands as
in [15], and both the transmitter and the receiver have two om-
nidirectional antennas. To evaluate the system performance,
we use the same dataset as in [15] and expand it with more
challenging data from the following cases: 1) severe environ-
mental conditions, such as rain and wind, 2) target car parking
in a busy parking lot and 3) large motions around the target
car, including periodic walking, hand waving near car win-
dows, and loading/unloading bags from adjacent cars, so as
to verify the robustness of the proposed system. Experiments
were conducted over a month using different car models, and
we have around 100 minutes long data samples for each chal-
lenging case. We collected child presence data using a baby
doll and children under the age of six with their parents’ ap-
proval.

4.1. Overall Performance

The overall detection and false alarm rate performance for all
the test cases are summarized in Table 1, showing a 99% de-
tection and around 3% false alarm. We also compared the
proposed system with WiCPD [15]. Although WiCPD uti-
lizes a transition target detector to detect children in transi-
tion status, such as sleeping with minor motions, it cannot ad-
dress breathing detection under outside interference, and thus
the proposed method outperforms WiCPD in overall perfor-
mance. In addition, the proposed system can detect a static
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Fig. 6. False alarm rates with and without false alarm re-
moval.

child or child in motion within 10 seconds of responsive time.
The detection accuracy and delay performance can well sat-
isfy the Euro NCAP protocol requirements which shows its
great potential for commercial applications.

Table 1. Results comparison
Detection
accuracy

False alarm
rate

WiCPD [15] 82.4% 6.6%

Proposed method 99.0% 3.2%

4.2. Benchmark Study

Fig. 5 evaluates the performance of the proposed CPD system
with and without applying the enhancement on ACF. When
there is “Nothing around”, meaning there is no motion or in-
terference outside the car, both methods perform well, while
with the proposed enhancement, the detection accuracy in-
creases to 99.2% with rain/wind and 99% in a busy parking
lot. Further depicted in Fig. 6, the proposed CPD system
achieves a lower false alarm rate in every scenario with the
false alarm removal techniques.

5. CONCLUSION

This paper presents a robust WiFi-based CPD system that is
resilient to interference such as outside motion or bad weather
conditions. The proposed CPD system consists of a motion
detector and a breathing detector. Breathing detection is im-
proved by applying image enhancement on the intermediate
spectrogram, followed by false alarm removal. The experi-
mental results show that the implemented CPD system can
achieve 99% detection accuracy and 3% false alarm rate even
under unfavorable environmental conditions with less than
10s response time.
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