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WiCPD: Wireless Child Presence
Detection System for Smart Cars
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Abstract—Child presence detection (CPD) is becoming a reg-
ulatory requirement for car manufacturers to save children’s
lives when they are left alone in unattended vehicles. However,
most of the existing solutions require dedicated devices and suf-
fer from limited accuracy and coverage. In this article, we build
WiCPD, the first-of-its-kind in-car CPD system using commod-
ity Wi-Fi, which can cover the entire interior of a car with no
blind spot. First, we introduce a statistical electromagnetic model
which accounts for the impact of motion on all the multipaths
inside a car, followed by a motion statistics metric indicating
the ambient motion intensity and a signal-to-noise-ratio (SNR)
boosting scheme to extract the minute chest movement. Then,
we design a unified CPD framework consisting of three target
detector modules, including a motion target detector to detect
a child in motion/awake, a stationary target detector to detect
a stationary/sleeping child, and a transition target detector to
detect a sleeping child with sporadic motion who is missed by
both the motion and stationary target detectors. We implement
a real-time WiCPD system by using commercial Wi-Fi chipsets,
deploy it over 20 different cars, and collect data for multiple chil-
dren aging from 4 to 50 months. The results show that WiCPD
can achieve 100% detection rate within 8 s when the child is
awake/in-motion and 96.56% detection rate within 20 s for a
static/sleeping child. Extensive experiments also demonstrate that
WiCPD can be easily deployed in minutes without calibration and
enjoys very low CPU and memory consumption, thus promising
a practical candidate for CPD applications.

Index Terms—Child presence detection (CPD), in-vehicle sens-
ing, real-time system, smart car, wireless sensing.

I. INTRODUCTION

W ITH the proliferation of automobiles, the heatstroke,
and death of children caused by being left alone in a

vehicle have gained increasing attention all over the world.
According to the Heat Stress From Enclosed Vehicles [1], [2],
882 children have died (an average of 38 per year) and many
more have suffered disabilities due to organ or brain damages
caused by pediatric vehicular heatstroke (PVH) since 1998
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in the U.S. As more than 97% of the children reported are
under the age of 6 who have little ability to exit the vehicle
on his/her own, child presence detection (CPD) is becoming
a necessary function to improve the safety of cars, especially
in hot weather when the temperature inside a closed car can
become fatal within a few minutes. Toward this end, from
2022, the European new car assessment programme (NCAP)
will reward solutions of CPD Systems, which are also consid-
ered as a regulatory requirement for all newly manufactured
passenger vehicles starting from 2023. Equipped with CPD, a
child left alone in an unattended car can be detected and care-
givers or emergency services will be alerted to avoid heatstroke
fatalities [3].

Pioneer efforts have explored CPD based on different
techniques/devices as summarized in Table I. Early CPD
systems are implemented by leveraging the information from
a variety of sensors equipped on the baby seat, such as
the optical/weight/heat/pressure sensors [4]–[8]. However, the
sensor-based methods have several drawbacks, such as the
limited coverage making it hard to detect a child outside
the baby seat, high false alarm rate (for example, a child
cannot be easily distinguished from an inanimate item of a
similar weight using weight sensors), and ad hoc parameters
corresponding to different children and cars. Later, wireless
transceivers [9] and capacitive/electric sensors [10] were intro-
duced to reduce the false alarm rate while the detection area is
still limited within/next to the baby seat. Pyroelectric infrared
(PIR) sensor-based approaches [11]–[13] turned out to be able
to enlarge the coverage by detecting the motion of a child.
However, PIR sensors are susceptible to the temperature of
the surrounding environment, which degrades its reliability in
practice. Vision-based CPD systems [14]–[16] are more reli-
able in detection accuracy by using image/video processing.
However, they usually require dedicated hardware/cameras,
thus increasing the cost and energy consumption of the car.
Also, the quality of the image/video is vulnerable to light
conditions. Although the latest machine learning-based tech-
niques [17] have achieved better detection accuracy, they
still heavily depend on the quality of the input image, thus
preventing their practical deployments.

Recently, radio frequency (RF) based in-vehicle human
sensing has been extensively explored based on vital sign
detection [18], [19], location estimation [20]–[25], etc.,
because of its superiority in preserving privacy and requir-
ing no wearable sensor [26], [27]. However, to detect the
subtle motion corresponding to vital signs, such as the
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TABLE I
COMPARISON OF STATE-OF-THE-ART WORKS FOR IN CAR CPD

chest movement (4–12 mm) and heartbeat displacement
(0.2–0.5 mm) and then identify the presence of a human, most
of them [20]–[25] rely on the millimeter-Wave (mmWave)
signal, which is not readily available inside most vehicles
nowadays.

While many works have been proposed on realizing CPD, to
the best of our knowledge, none of the existing technology is
ready for world-wide deployment which should ideally satisfy
the following requirements.

1) Accurate: It should be sensitive enough to achieve near
100% detection rate as every miss detection may become
catastrophic. Accompanied with the high sensitivity is
a potentially escalated false alarm rate, yet it does not
take much effort for parents/caregivers to turn off the
false alarm alert while rest assured the child is better
protected, if the false alarm rate is reasonably low.

2) Responsive: It should be responsive to the presence of
a child (if any) for two main reasons. First, an ambient
temperature of 22 ◦C (73 ◦F) in a closed car can drive
up at 3.47 ◦C (6.25 ◦F) per 5 mins [1], [28] and heat
exhaustion can begin 40 ◦C and over 54 ◦C often leads
to heatstroke [29]. In addition, parents/caregivers would
like to receive alerts as early as possible before they
walk too far away from the car.

3) Large Coverage: It should be able to cover the entire
interior of a car with no blind spot, including both on
and under the seat, since a child may fall on the footwell
areas when he/she is struggling.

4) Calibration Free: It is expected to work robustly for
different car models, children of different ages/genders/
weights in all weather/temperature/environments without
calibration.

5) Low Cost: Installation of the CPD should require very
low efforts, and ideally, it should reuse the current in-car
facilities with no additional hardware change.

With the ubiquitous deployment of Wi-Fi in the era of the
Internet of Things (IoT), it is shown that about 12%–33%
(varies in different regions) of the vehicles in operation world-
wide already have Wi-Fi and more (about 400 million by
2025 [30]–[34]) are planning to have Wi-Fi equipment. As
a result, many in-vehicle Wi-Fi sensing-based functionalities
have emerged, such as driver’s activity monitoring [35], emo-
tion sensing [36], etc., to improve the driving safety by reusing
the in-car Wi-Fi equipment. Therefore, we ask the following

question: Can we use Wi-Fi sensing to do CPD? Although the
Wi-Fi sensing technology has driven many practical in-vehicle
applications [35]–[39], enabling CPD using commercial Wi-
Fi while satisfying all the five aforementioned requirements
entails several challenges.

First, while the existing works have shown the feasibility
of using the variation of the wireless signal [40] to detect
an adult [41], the size of a child is much smaller than an
adult and his/her motion/breathing strength is much weaker as
well. Thus, a child causes much weaker impact on the wireless
signal than an adult, making him/her more challenging to be
detected. mmWave-based methods [21]–[25] are demonstrated
to be able to capture both the activity motion (head/arm/torso
movement) and breathing motion (chest movement of a sta-
tionary child) due to its short wavelength and larger bandwidth.
However, the coverage of mmWave-based methods is limited
within the Field-of-View (FoV) with respect to corresponding
mmWave radar.

Second, it is nontrivial to achieve a fast response in CPD.
Although existing motion detector [40], [41] can work in
general motion sensing applications, most of them rely on a
change detection of the channel profile, e.g., variance, phase
difference, etc. Since they do not leverage the reflection sig-
nal from all the dynamic scatters constructively, most of them
require a long window of samples and thus causing a large
detection delay. For example, DeMan [41] requires 500 pack-
ets (i.e., about 17 s corresponding to a sample rate of 30 Hz)
to achieve 98% detection rate for an adult in motion. Even
longer detection delays are expected in detecting a child, due
to his/her much smaller size and weaker motion strength than
an adult.

To tackle these challenges, we consider a statistical elec-
tromagnetic (EM) model [42], which calculates the auto-
correlation function (ACF) of the channel state information
(CSI) measurements consisting of all the multipath compo-
nents. Then, a motion statistics metric is elaborated to quantify
the intensity of ambient motion, which can ensure that each
dynamic scatterer, regardless of its location, contributes to
the overall motion statistics constructively. However, in most
of the conventional variation-based methods, the dynamic
scatterers in different locations may contribute to the CSI
variation destructively. As a result, our motion detection is
more sensitive than most of the conventional variation-based
approaches [40].
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To detect a child accurately regardless of his status, i.e.,
motion/awake, stationary/sleeping or in between (sleeping
with occasional motion), three target detectors are designed:
1) a motion target detector to detect a child who is in
motion/awake based on the motion statistics; 2) a stationary
target detector to identify a stationary child who has very few
motions such as when he/she is in sleeping. We consider a
maximal ratio combining (MRC) [43] scheme to improve the
signal-to-noise-ratio (SNR) of the ACF using the motion inten-
sity in each subcarrier as the channel gain. The boosted ACF
is then leveraged to extract the minute breathing pattern/chest
movement and estimate the breathing rate of the child [44].
Then, we devise a module to check if a continuous breathing
rate can be detected and the breathing rate should fall within a
normal range of a child for stationary child detection; and 3) a
naive Bayes classifier-based transition target detector to deal
with the case when the motion and stationary target detec-
tors fail to detect a child in transition status. For example, a
sleeping child may have minor motion, such as subtle head
rolling or arm motion. This kind of motion is too weak and
short to be detected by the motion target detector. Meanwhile,
it corrupts the continuity of the breathing rate estimation and
is missed by the stationary target detector as well. To the best
of our knowledge, this is the first time that such a transition
status is considered in CPD design, which contributes to about
5% improvement on the detection accuracy as validated in the
experiment (see Section IV-C).

As WiCPD leverages the reflection signals from all the
dynamic scatterers constructively, the motion target detec-
tor can detect motion within two consecutive CSI sam-
ples/measurements, corresponding to a shortest delay of 2�t
where �t = 1/Fs with Fs denoting the sample frequency. On
the other hand, the MRC scheme can greatly boost the SNR of
the ACF (see Fig. 5 in a later section) than simply averaging
over subcarriers [45] and thus achieves 96.56% detection rate
for a stationary child within 20-s while DeMan takes 3000
packets (about 100 s at 30-Hz sample rate) to detect an adult
with 95% detection rate.

We have built a real-time prototype system of WiCPD using
commercial NXP Wi-Fi chipsets [46], and conducted extensive
experiments over 20 different cars to detect five children of
different ages and genders, when the car is parked in various
locations. We have also performed long-term tests to evaluate
the CPU and memory consumption of the real-time WiCPD
system. The results show that by only consuming 11% of a
Dual-core ARM Cortex-A7 CPU up to 1 GHz and 40 MB
random access memory (RAM), WiCPD achieves greater than
96.5% detection accuracy with a responsive time less than
20 s in detecting a child in vehicle regardless of his/her
status.

In summary, the major contributions of WiCPD are as
follows.

1) To the best of our knowledge, WiCPD is the
first-of-its-kind commercial Wi-Fi-based CPD system
with a high detection rate, fast responsive time,
and large coverage. It can be easily incorporated
in the current and future in-car Wi-Fi system

with minimal installation cost as long as CSI is
available1 [31], [32].

2) We proposed a unified CPD framework consisting of
three target detector modules to detect a child in all the
possible status. WiCPD demonstrates ≥ 96.4% detec-
tion accuracy with ≤ 3.96% false alarm while ≤ 8 s
to detect a child in motion and ≤ 20 s to detect a
stationary/sleeping child.

3) We conduct extensive experiments with baby doll and
real babies of different ages/genders/weights under dif-
ferent weather/temperature/environments. Experiments
demonstrate that WiCPD can achieve accurate, robust,
and responsive detection with affordable CPU and
memory consumption, making it a promising candidate
for world-wide deployment.

The remainder of this article is organized as follows.
Section II introduces the statistical signal model. The design
of WiCPD is presented in Section III followed by the imple-
mentation and evaluation in Section IV. Finally, Section V
discusses the limitations and future works while Section VI
concludes this article.

II. STATISTICAL SIGNAL MODEL

A. CSI on Commercial Wi-Fi

Let X(t, f ) and Y(t, f ) denote the transmitted and received
signal over a subcarrier with frequency f at time t. Then,
the corresponding CSI can be estimated as H(t, f ) =
([Y(t, f )]/[X(t, f )]) [50]. Due to multipath effect, H(t, f ) can
be expressed as follows:

H(t, f ) = s(t, f ) + n(t, f )

=
L∑

l=1

αl(t, f )e−j2π f τl(t) + n(t, f ) (1)

where s(t, f ) denotes the channel information composed of
all the propagation paths and n(t, f ) represents the additive
white Gaussian noise (AWGN) with power density of σ 2

n (f )
at time t and frequency f . L is the number of paths, αl and
τl denote the complex gain and propagation delay of the lth
path, respectively.

B. Statistical CSI Model

In this part, we introduce a statistical model of s(t, f )
in (1) based on the superposition properties of EM fields [42].
Note that the statistical model, motion statistics and using
MRC to boost ACF for better breathing rate estimation
are first proposed in our previous work [42], [44], [51]
for indoor sensing applications. We briefly review them for
completeness in this article while focusing on exploring its
performance/reliability for in-vehicle environment and CPD.

1We note that not all the existing in-vehicle Wi-Fi chipsets/systems support
direct CSI data acquisition. However, it is usually doable by minimal software
modifications of the Wi-Fi driver as illustrated in the well-known Atheros CSI
Tool [47] and Linux 802.11n CSI Tool [48]. In addition, the IEEE 802.11
community is now supporting the integration of wireless sensing through the
IEEE 802.11bf standard, where CSI data collection and analysis will be greatly
expedited [49].

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 25,2024 at 20:18:04 UTC from IEEE Xplore.  Restrictions apply. 



ZENG et al.: WiCPD: WIRELESS CHILD PRESENCE DETECTION SYSTEM FOR SMART CARS 24869

Fig. 1. Multipath propagation inside the car.

The intuition/principle of the statistical model is that each
scatter can be treated as a virtual antenna which transmits
its received EM waves in all the directions as shown in Fig. 1.
These EM waves will then add up together at the received
antenna after bouncing off the in-car scatterers [52]. Therefore,
s(t, f ) can be rewritten as follows:

s(t, f ) =
∑

k∈�s(t)

sk(t, f ) +
∑

m∈�d(t)

sm(t, f ) (2)

where �s(t) and �d(t) denote the set of static and dynamic
scatterers, respectively. sk(t, f ) and sm(t, f ) represent the EM
waves transmitted/reflected by the kth static scatterer and the
mth dynamic scatterer, respectively.

In practice, within a very short period, it is reasonable
to assume that �s(t) and sk(t, f ), k ∈ �s(t) barely change.
As a result, the contribution of all the static scatters can be
approximated as a constant, i.e.,

s(t, f ) ≈ Es(f ) +
∑

m∈�d(t)

sm(t, f ) (3)

where Es(f ) = ∑
k∈�s(t) sk(t, f ).

Given the channel reciprocity, EM waves traveling in both
directions will undergo the same changes [52]. Therefore, if
the receiver (RX) were transmitting EM waves, the received
EM waves at the mth scatter/virtual antenna would be the
same as sm(t, f ). As a result, sm(t, f ) can be expressed as
follows [53]:

sm(t, f ) =
∫ 2π

0

∫ π

0
Fm(�, f ) exp

(
−j�k · �vmt

)
sin(α) dα dβ

(4)

where �vm denotes the motion speed of the mth scatter. F(�)

denotes the complex gain incoming from direction � =
(α, β) while α and β stand for the elevation and azimuth
angles, respectively. �k = −k(�x sin(α) cos(β)+�y sin(α) sin(β)+
�z cos(α)) and k = [(2π f )/c] denote the free-space wave
number with c being the speed of light.

III. WICPD DESIGN

This section presents the design of WiCPD, which aims
at enabling accurate and responsive in-car CPD using com-
mercial Wi-Fi. In general, we can categorize a child in
the following three different status and design corresponding
detector modules.

1) Motion: A child who is awake has frequent/substantial
motions, such as swinging his/her arms/legs/torso,
random body motions during his/her struggling to get
out of the baby seat, etc. Usually, this kind of motion
induces a large number of dynamic scatterers and can
be detected by a motion target detector.

2) Stationary: A sleeping child has negligible motion. A
stationary target detector is designed to capture the con-
tinuous breathing rate of the child and thus identify
his/her presence.

3) Transition: A child is sleeping but with slight and inter-
mittent motion such as occasionally moving his head
during sleeping. Since this kind of motion only corre-
sponds to the movement of a very small part of the
child’s body (i.e., a few dynamic scatterers), it cannot
lead to a detectable change on the CSI and thus cannot
be captured by the motion target detector. Yet, it will
corrupt the minute breathing motion associated with the
minute chest movement and fail the continuous breath-
ing rate estimation. To handle this case, we design a
transition target detector.

A. System Overview

Fig. 2 depicts the overview of the WiCPD system. The
left side is an illustration of the in-car environment where
the green dotted lines denote the multipath signal propagation
inside the car. The RX measures the CSI from the incoming
packets transmitted by the TX. The CSI measurements are
first passed through a Hampel filter [54] to remove outliers
induced by practical distortions such as jitters of the phase-
locked loops (PLLs) [55]. Afterwards, the CSIs are processed
by the motion target detector to detect if there is a child in
motion inside the vehicle. If the decision is YES, WiCPD
reports a “child in vehicle.” Otherwise, the stationary target
detector is triggered to detect the presence of a stationary
child. If neither the motion target detector nor the stationary
target detector detects the presence of a child, the transition
target detector will further confirm if the child is in a transition
status, i.e., sleeping with slight/intermittent motion. WiCPD
outputs “no child in vehicle” only when neither of the three
aforementioned detectors detects a child in vehicle.

To detect a child in motion in the vehicle, we leverage the
statistical ACF of the Wi-Fi CSI measurements and a motion
statistics metric, which constructively utilizes the reflection
signal from all the dynamic scatters to reflect the instan-
taneous ambient motion strength of surrounding targets in
motion status.

To detect a stationary child, we first leverage the motion
statistics on each subcarrier to select those subcarriers which
are sensitive to motions since the breathing motion corre-
sponds a child’s chest movement is subtle and easily to
be submerged by the noise. Then, the motion statistics on
those selected subcarriers are utilized as weights to further
boost the SNR of the breathing motion in an MRC man-
ner [44], [56]. Afterwards, the breathing rate is estimated and
a “child in vehicle” is detected only when a normal breathing
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Fig. 2. System architecture of WiCPD.

rate2 is estimated and lasts for a certain duration, since an
instantaneous breathing rate may be corrupted by noise.

To detect a child in transition status, we harness the follow-
ing three observations: 1) intermittent breathing rates can be
estimated, even though not continuously; 2) the motion statics
when a child is present is different from that in a real empty
vehicle, even though it cannot be distinguished by using the
motion target detection only; 3) inspired by [59], the top k
largest eigenvalues of the covariance matrix RH of the CSI
can represent the multipath profile (more specifically, Angle
of Arrival (AoA)) of the present target. Therefore, we con-
struct a new feature using the top k largest eigenvalues of RH ,
to extract the CSI change on AoA caused by the intermittent
slight motion of a child in transition status. Eventually, the
motion statistics, breathing rate estimates, and top k largest
eigenvalues of RH form a feature vector, which is then fed
into a native Bayes classifier [60] to detect if there is a child
in transition status of not.

Next, we will introduce the motion target detector, station-
ary target detector, and transition target detector in detail.

B. Motion Target Detector

To detect a child in motion, we consider the modeling in
our previous work [42], where a link between the ACF of CSI
and the motion of the surrounding dynamics scatterers/objects
is established, a motion statistics is defined to quantify the
intensity of surrounding motions, a motion target detector is
presented based on the motion statistics. However, we evaluate
it in-vehicle environments.

ACF Calculation: Recalling (1), the ACF of the measured
CSI is given by

ρH(τ, f ) = cov
[
H(t, f ), H(t + τ, f )

]
√

σ 2
H(t,f )σ

2
H(t+1,f )

(5)

where cov[AB] denotes the covariance between A and B.
σ 2

H(t,f ) and σ 2
H(tτ ,f ) denote the variance of H(t, f ) and H(t +

τ, f ), respectively. Substituting (1) and (2) into (5), we have

ρH(τ, f ) = E2
d(f )

E2
d(f ) + σ 2

n (f )
ρs(τ, f ) + σ 2

n (f )

E2
d + σ 2

n (f )
δ(τ ) (6)

2A normal breathing rate here refers to [6, 35] beats per minute (BPM)
[57], [58].

where δ(·) is a Dirac delta function. E2
d(f ) is the variance of

s(t, f ) which measures the power reflected by all the dynamic
scatterers. ρs(τ, f ) can be written as follows3:

ρs(τ, f ) ≈ 1

E2
d(f )

∑

m∈�d

σ 2
Fm

(f )ρEm(τ, f ) (7)

where ρEm(τ, f ) = ∑
u∈{x,y,z} ρEm,u(τ, f ) represents the auto-

correlation of the received EM field in {x, y, z} directions and
σ 2

Fm
(f ) denotes the reflection power of the mth dynamic scat-

ter. It can be approved that ρEm(τ, f ) is a continuous function
at τ = 0 [52]. As a result, in (7), if there are dynamic scat-
ters, i.e., σ 2

Fm
(f ) > 0, we have ρs(τ, f ) → 1 when τ → 0.

Substituting (7) into (6), we have

ρH(τ, f ) = E2
d(f )

E2
d(f ) + σ 2

n (f )
> 0, when τ → 0. (8)

Otherwise, if there is no dynamic scatterer, we have
σ 2

Fm
(f ) = 0 and E2

d(f ) = 0 and thus

ρH(τ, f ) = E2
d(f )

E2
d(f ) + σ 2

n (f )
= 0, when τ → 0. (9)

As a result, limτ→0 ρH(τ, f ) can work as a indicator of the sur-
rounding dynamic scatters/motion targets. More importantly,
the scattering power of all the dynamic scatters are added in
a constructive way in (7) and thus making it more sensitive
to target motions. As a preliminary verification, we collect
CSI about 3 mins in a typical car with and without the pres-
ence of a motion/awake child using a pair of Wi-Fi devices
with 2 Tx antennas and 2 Rx antennas, running on 5.8 GHz
with 40-MHz bandwidth. Fig. 3 shows that the motion statis-
tics behaves differently in empty and motion environments.
Moreover, it has less overlap between the empty and motion
case than CSI variance, thus indicating a better sensitivity of
the motion statistics.

Motion Statistics: In practice, limτ→0 ρH(τ, f ) can be
approximated by limτ→0 ρH(τ, f ) ≈ ρH([1/(Fs)], f ) and we
average the limτ→0 ρH(τ, f ) over all the subcarriers to get
a more reliable motion indicator, which is called motion

3Detailed derivations are omitted due to the space limitation while can be
found in the well established statistical EM theory about the spatial correlation
for fields in 3-D channels [42], [52], [53].
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(a) (b)

Fig. 3. Comparison between motion statistic and CSI variance in an empty car and a car with the presence of a motion/awake child.

statistics hereafter, i.e.,

lim
τ→0

ρH(τ, f ) = 1

Nf

Nf∑

i=1

ρH

(
1

Fs
, fi

)
(10)

where Fs is the sample rate, Nf denotes the number of
subcarriers, and fi representing the frequency of the ith sub-
carrier. To avoid the motion statistics outlier due to the
instantaneous distortion/noise, we use a 2 s sliding window
to compute the averaged motion statistics in the practical
experiments/applications.

A question is whether the motion statistic is easily to be
affected by the motion/dynamic targets outside the vehicle,
such as the passing cars and pedestrians. We note that the
motion statistics is robust against the motion outside of the
vehicle. This is because a closed vehicle can be viewed as a
metal cavity which bounds most of the radio signals inside
the car while shields the outside wireless/radio inferences. We
show the experiment validations in Section IV-C.

Motion Target Detector: Given the motion statistics, the
principle of the motion target detector is very straightforward,
i.e., a child in a vehicle is detected when the motion statistics
is larger than a threshold η0 which is derived in the following.

When there is no motion in the car, according to (1) and (3),
the CSI H(t, fi) consists of only static scattered signal Es(f )
and white noise n(t, f ), i.e., H(t, fi) = Es(f ) + n(t, f ) where
Es(f ) can be assumed as a constant in a empty car. As a result,
given a sufficient large number of samples NT , ρH(1/Fs, fi)
can be approximated as a Gaussian variable with mean 1/NT

and variance 1/NT , i.e., ρH(1/Fs, fi) ∼ N (1/NT , 1/NT).
Therefore, the distribution of the motion statistic ρ̂H(τ ) in an
empty car can be approximated by

ρ̂H(τ ) ∼ N
(

1

NT
,

1

NTNf

)
. (11)

To verify the derivation in (11), we collect 1 h CSI data in an
empty car using a pair of commercial Wi-Fi devices with car-
rier frequency fc = 5.805 GHz and bandwidth with 40 MHz.
Fig. 4 shows the Quantile–Quantile (Q–Q) plot of ρ̂H(τ ) cal-
culated from practical CSI measurements and the Gaussian
distribution with mean (1/NT) and variance [1/(NTNf )], which
validates our derivations.

Fig. 4. Statistical distribution of ρ̂H(τ ) in an empty car.

Given (11), we can derive the motion detection threshold
η0 with a predefined false alarm rate pF, i.e.,

P
(
ρ̂H(τ ) > η0

) = pF (12)

⇒ η0 = Q−1(pF) ∗ 1√
NTNf

+ 1

NT
(13)

where Q−1(·) is the inverse function of the Q-function with
Q(x) = (1/2π)

∫ ∞
x exp(−[u2/2]) du.

C. Stationary Target Detector

Although existing work has shown the feasibility of esti-
mating the breathing rate of an adult using wireless signal
[41], [61], [62], estimating the breathing rate for a child can be
more challenging because the size of a child is much smaller
than an adult and his/her motion/breathing strength is much
weaker as well. As a result, the SNR of the breathing signal
of a child is very low due to the slight motion of the chest
movement. To tackle the issue, we first select the subcarriers
with the top Ns (default as 10) largest motion statistics,4 aim-
ing at extracting the subcarriers which are most sensitive to
the subtle chest/breathing motion. Then, an MRC [43] scheme
is leveraged to maximize the SNR of the ACF for breathing
rate estimation [44]. We briefly review the main process below
and readers can refer [44] for details.

4Here the motion statistic is computed on each subcarrier independently.
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Fig. 5. Boosted ACF of the breathing signal and the corresponding breathing rate estimation. (a) Averaged ACF. (b) MRC boosted ACF. (c) Breathing rate
estimation.

Considering MRC techniques, the boosted ACF can be
expressed as follows:

ρ̂b
H(τ ) =

Ns∑

i=1

ω(fi)ρH(τ, fi) (14)

where ω(fi) is the channel gain of the breathing strength on
subcarrier fi. Recalling (6), the channel gain of subcarrier fi
in terms of ACF is [(E2

d(f ))/(E
2
d(f ) + σ 2

n (f ))] which can be
estimated by limτ→0 ρH(τ, fi) (see (7)–(9) for details). As a
result, WiCPD takes limτ→0 ρH(τ, fi) as the optimal ω(fi) and
thus the ACF of the breathing signal can be boosted by

ρ̂b
H(τ ) =

Nf∑

i=1

[
lim
τ→0

ρH

(
τ = 1

Fs
, fi

)]
ρH(τ, fi). (15)

Fig. 5 shows an example about the ACF of the CSI mea-
surements when a baby doll is sleeping in the car with a true
breathing rate of 27.5 BPM. As shown in Fig. 5(a) and (b), the
MRC approach achieves about 10 dB improvement in terms
of ACF compared with the existing method [45] which aver-
ages over all the subcarriers directly. As a result, the breathing
rate estimated from the MRC boosted ACF is more accurate
and continuous as shown in Fig. 5(c). Note that we cannot
maximize the breathing signal/motion directly because that the
channel gain of breathing signal cannot be directly extracted
from the CSI measurements. However, this problem is circum-
vented by applying MRC on the ACF with the motion statistics
of each subcarrier as the optimal weights.

Once we get the boosted ACF ρ̂b
H(τ ), the breathing rate of

the child can be estimated by fB = 60/τ̂ (BPM) where τ̂ corre-
sponds to the time lag of the first peak in ρ̂b

H(τ ). Afterwards,
the stationary target detector reports a child in vehicle if a nor-
mal child breathing rate (i.e., within [6, 35] BPM) is detected
and continuously lasts for a certain duration.

D. Transition Target Detector

If neither the previous motion target detector nor the station-
ary target detector detects “a child in vehicle,” the transition
target detector is triggered.

A child in transition status can induce a certain level of
motion statistics and intermittent breathing rate estimation,
which exhibits a different pattern from a real empty vehi-
cle, even though they cannot be detected by the motion target
detector or the stationary target detector only. To detect the
presence of a target in transition status, we consider the fact

Fig. 6. Experiment platform of WiCPD. (a) Hardware. (b) Software.

that the slight/intermittent motion of a child can change the
AoAs of partial of the multipath signals. Even though such
a change cannot be used to estimate the AoAs of the target
directly, it is inherently embedded in the measured CSI and can
be leveraged as a new feature. We resort to extracting the inter-
mittent motion information using the top k largest eigenvalues
of the covariance matrix RH of the CSI [59] and construct a
feature vector containing the motion statistic, breathing rate,
and the top k largest eigenvalues of RH . All these features are
fused together in a Naive Bayes classifier. We omit the details
of the Naive Bayes classifier and readers can refer to [59].

IV. EVALUATION

To comprehensively evaluate WiCPD, we build a real-time
system using the commercial Wi-Fi chipsets and conduct
extensive experiments in various car models to validate the
CPD detection performance using real babies and baby dolls.

A. Methodology

Implementation: As shown in Fig. 6(a), we build the hard-
ware system using the commercial NXP Wi-Fi chipset which
is dual-band operating on both 2.4 and 5 GHz. To get CSI,
we modify the driver of the Wi-Fi chipset. The main pro-
cessing board is a PICO-IMX7 System-on-Module consisting
of a Dual-core ARM Cortex-A7 CPU up to 1 GHz. The
Wi-Fi chipset contains two antennas with U.FL/IPX connec-
tor interfaces that can conveniently connect to the external
PCB antennas or the on-car antennas. The RX receives pack-
ets transmitted from the TX and captures CSI, containing 58
subcarriers with a sample rate of 30 Hz, unless otherwise men-
tioned. Both the TX and RX consist of two omnidirectional
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PCB antennas. The system runs on the 5.805-GHz channel
(default U.S. channel 161) with a bandwidth of 40 MHz.

We first develop the algorithm and the real-time system using
MATLAB for performance analysis and validation. It is then
implemented using C++ and ported on the PICO-IMX7 board
running on the Linux system. To display the CPD estimation
results, we develop a Demo Kit using Python, which shows
the live motion statistic, breathing rate estimations, and the
CPD detection results as shown in Fig. 6(b). During the real-
time experiment, the RX keeps capturing CSI and running the
WiCPD algorithm to calculate the corresponding CPD decision,
which is then sent to the Demo Kit via Wi-Fi every 1 s.

Data Collection: The data collection mainly involves three
parts, including 1) empty case over 20 different cars in differ-
ent scenarios; 2) experiments for the Lifelike Ashley baby doll;
and 3) experiments with real babies. As the cars are usually
empty for most of the time, we perform an extensive evaluation
of false alerts by gathering data from over 20 different cars.
For the baby doll test, we deploy WiCPD in four different fam-
ily cars5,6. For each car, the TX is first located in the center of
the dash board and then in the glove box as shown in Fig. 7.
RX is mounted in four different locations, including three on
the car liner next to top of rear car seat and 1 in the cup holder
of the rear door.7 As shown in Fig. 7, in total we have eight
TX-RX configurations and two categories of testing objects
including: 1) Baby Doll: In total, 11 different locations inside
the car are tested using the baby doll as an object. Specifically,
the baby doll sits in a standard car seat [see Fig. 7(a)] in loca-
tion #3, #4, #9, #10, and #11 while it is put in the footwell
area with no car seat8 in location #1, #2, #5, #6, #7, and #8 to
mimic the case that the child falls down from the car seat.9 At
each location, when the baby doll sits in a car seat, it is tested
with forward and rear-facing direction, respectively. Moreover,
three different postures, including lying on the floor facing up,
facing down, and sitting on the floor are tested when the baby
doll is in the footwell area. 2) Real Baby: We also evaluate
the performance of WiCPD in detecting five real babies of
different ages and genders as shown in Table II. Overall, our
experiments range from a four months infant to a five years
toddler with different heights and weights. During the test, the
baby sits in the car seat with buckled up in location #3, #4, #9
#10, and #11. We do not test the footwell area because of its
limited spaces to put the car seat in. TX is placed at location
#1 while the two antennas of the RX are separately mounted
in location #1 and #3 to harvest the best coverage.

5The test cars include a Toyota Camry SE Sedan of size 192′′L×72.4′′W×
56.9′′H, a Toyota Highlander of size 197′′L × 76′′W × 68′′H, a Honda HR-V
Hatchback of size 169′′L × 70′′W × 63′′H, and a Honda Civic Sedan of size
182′′L × 71′′W × 56′′H. The Toyota Highlander has three rows of car seats
while the others have two rows of car seats

6L stands for length, W stands for width while H stands for height. All are
in inches denoted by symbol′′.

7The locations of the TX and RX are the favored locations for car antennas
according to our survey with the original equipment manufacturers (OEMs)
and car manufactures.

8The space is too small to put a car seat in.
9For example, Maryland U.S. current law requires that children under eight

years old to ride in an appropriate child restraint, unless the child is 4′9" or
taller.

Fig. 7. Experiment scenarios. Eleven different locations of the baby, two
different locations of the TX, and four different RX locations are tested. Note
that baby/child in locations #1, #2, #5, #6, and #7 represent the footwell area
while #8 represents the trunk area for hatchback cars. TX in #1 is fixed in
the center of the dashboard while it is put inside the glove box in location
#2. RX in #1, #2, and #3 are on the car liner next to the top of the car seats
while location #4 denotes the cup holder on the rear door. (a) Example of the
experiment setup. (b) Test scenarios in a typical car.

TABLE II
OBJECT BABY OF WICPD EXPERIMENT

The experiments are conducted over different days across
13 months in different environments, including an outdoor
parking lot next to a trade center, a underground garage of
a shopping mall, street parking, and a personal garage for
family use. The in-car environment has natural changes as the
car owner uses the car on a daily basis. Note that the in-car
environment is allowed to freely change without any restric-
tions during this time. WiCPD is a calibration-free system
in different real-world environments without any impractical
assumptions/constraints.

B. Overall Accuracy

To evaluate the overall performance of WiCPD, three key
metrics, including responsive time, detection rate, and false

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 25,2024 at 20:18:04 UTC from IEEE Xplore.  Restrictions apply. 



24874 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 24, 15 DECEMBER 2022

(a) (b)

Fig. 8. Overall performance of WiCPD system. (a) Detection rate. (b) ROC curves.

alarm rate10 are demonstrated since they are the key require-
ments to detect/rescue a child left alone in the vehicle timely.
Note that we do not evaluate the performance of detecting a
child in transition status independently because the transition
status is usually merged with the sleeping/stationary status.
Hereafter, “Sleeping” refers to a stationary child in sleeping
while “Awake” means the child is awake and more likely to
create motions.

Fig. 8 shows that WiCPD achieves 100% detection rate with
less than 8 s responsive time for an awake child in motion
with normal activities such as struggling to get out of the
car. Besides, WiCPD shows 96.56% detection rate within 20 s
for a sleeping child. As shown in Fig. 8(a), WiCPD takes a
slightly longer responsive time to detect a sleeping child. This
is because that the stationary target detector takes at least more
than one breathing cycling time to estimate the breathing rate
and thus causing a longer delay. However, Fig. 8 shows that
overall WiCPD can still achieve more than 97.87% detec-
tion rate with the response time less than 20 s, which is a
quite secure time for CPD applications. Fig. 8(c) shows the
Receiver’s operating characteristic curve (ROC) of WiCPD,
indicating 1.04% and 3.96% false alarm rate for an awake and
sleeping child, respectively, with the detection rate ≥ 96.4%.

C. Comparison With Existing Works

We also implement a benchmark method (named as
“Overall-CSI variance” in Fig. 8) in which we replace the
motion target detector module with theCSI variance-based
motion detector [40] and exclude the transition target detec-
tor. As seen in Fig. 8, WiCPD outperforms the benchmark
methods in all the responsive time, detection rate, and false
alarm rate mainly because:

1) Robust Motion Target Detector: on the one hand,
WiCPD leverages a motion statistic based on a statisti-
cal EM model considering all the multipath components.
Thus, it enjoys better sensitivity to the surrounding
motions than that based on CSI variance, as shown in
Section III-B and Fig. 3. On the other hand, WiCPD also
enjoys very robust performance to the motions outside
the car since a closed car can be regarded as a closed

10Detection rate is also known as true positive rate and false alarm rate is
also known as false positive rate.

metal box which can separate the inside and outside
wireless/radio signals very well. To verify, we conduct
empty data collection in eight different scenarios, i.e.,
a) an empty car in an outdoor parking lot with no
motion target around; b) there are cars driving around,
for example passing through the adjacent parking space;
c) pedestrians walking around an empty car; d) an empty
car in the garage; e) empty car in windy weather; f) an
empty car in street parking with cars passing by once in
a while; g) outdoor parking lot; and h) in a rainy weather.
As seen in Fig. 9(a), over 99.29% of the motion statistics
are less than 0.1 for outside motions and 94.4% of the in-
car motions demonstrate larger than 0.1 motion statistics.
However, the CSI variance shows a much larger over-
lap between the in-car and outside motions as shown in
Fig. 9(b). Therefore, WiCPD is not only good at cap-
turing surrounding motions but also resilient against the
motion outside the car and thus promising it as a robust
solution in practice;

2) Powerful Stationary Target Detector: WiCPD utilizes the
motion statistics as channel gain to first select those sub-
carriers which are sensitive to breathing motion and then
combine them in an MRC way. As a result, WiCPD can
greatly boost the SNR of the breathing motion embed-
ded in the ACF (see Fig. 5) and achieves more accurate
and responsive estimation of breathing rate to capture
the static child inside the car;

3) Novel Transition Target Detector: to handle the exper-
imentally observed missing cases11 by both the motion
target detector and stationary target detector, a Naive
Bayes classifier based transition target detector is
proposed, which, to the best of our knowledge, was
never considered in the existing works. To test the contri-
bution of the transition detector independently, we only
use the real baby data and exclude the data from the
babydoll. This is mainly because that the baby doll
is usually either static or in-motion and lacks such
a transition status that only exists in a real child.12

Table III demonstrates the performance of CPD with

11Few of the existing works have mentioned such a case and it may be due
to that they have never been tested under such a comprehensive test.

12From our experiment there are about 6.5% of the time during which a
sleeping child is in transition status.
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(a) (b)

Fig. 9. Motion statistics versus CSI variance: in an empty car or with the presence of an motion/awake child in a car. (a) CDF of detection using motion
statisitcs. (b) CDF of detection using the variance of CSI.

(a) (b)

Fig. 10. Performance of WiCPD versus sample rate Fs. (a) Detection rate. (b) ROC curves.

TABLE III
EVALUATION ON THE TRANSITION TARGET DETECTOR

versus without the transition target detector. As seen,
WiCPD improves about 5.5% detection rate by incorpo-
rating the transition target detector with a moderate of
0.65% increment in false alarm rate.

D. Impact of Sample Rate

As shown in Section III-B, a higher sample rate Fs can
provide WiCPD with better motion statistic and breathing esti-
mations, thus improving the overall performance. However, in
practice, a higher sample rate will increase the overhead of the
hardware system and may cause interference to the surround-
ing Wi-Fi network. As a result, we evaluate the performance
with different sample rates, which can guide the practical set-
tings. Fig. 10(a) shows that WiCPD takes 13, 8, and 8 s
response time to achieve 100% detection accuracy for the
detection of an awake child, corresponding to the sample rate
of 10, 20, and 30 Hz. Additionally, it achieves ≥ 96.18%

detection rate with a responsive time of 20 s for all the 10,
20, and 30 Hz cases in detecting a static child. Note that in
practice, CPD system should consider detection rate first since
every missing case may be catastrophic. As a result, we rec-
ommend Fs = 30 Hz, which is affordable for most of the
Wi-Fi systems.

E. Impact of Effective Bandwidth

We study the impact of the effective bandwidth attributed
by antennas and bandwidth together. Specifically, the effective
bandwidth Ne is defined as Ne = NsB where Ns = NTX · NRX
denoting the spatial links between TX and RX with NTX and
NRX representing the number of TX and RX. B is the band-
width of the Wi-Fi system which is 40 MHz for 5 GHz
channel and 20 MHz for 2.4 GHz channel in the WiCPD
system. Fig. 11(a) shows that when detecting an awake child
with the responsive time set as 8 s, WiCPD achieves 85.46%,
92.86%, and 100% detection rate with the effective band-
width increased from 40 up to 160 MHz. In the presence of
a sleeping child, the detection rate increases from 75.62% to
86.68% when Ne goes from 40 to 160 MHz, corresponding
to a responsive time of 8 s as well. As shown in Fig. 11, the
responding sensitivity and false alarm rate are also improved
with the increment of effective bandwidth. Overall, Fig. 11
depicts that WiCPD can achieve a remarkable performance
by using the typical 2 × 2 Wi-Fi system with 40 MHz
bandwidth.
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(a) (b)

Fig. 11. Performance of WiCPD versus bandwidth Ne. (a) Detection rate. (b) ROC curves.

Fig. 12. Verification for different cars (see Section IV-F for details of the
car models).

F. Environment Independence

To be a world-wide CPD system, it is important to evaluate
its robustness in different environments, such as in different
cars, children of different ages, and genders. As a result, this
section evaluates the detection rate of WiCPD in the following
aspects: 1) different car models; 2) different children; 3) dif-
ferent postures of the children; and 4) different commercial
antennas operating on different central frequencies and bands.

Independence on Different Cars: Fig. 12 shows the detec-
tion rate of WiCPD in four different car models including:
a Toyota Highlander (Car #1), a Toyota Camry SE Sedan
(Car #2), a Honda HR-V Hatchback (Car #3), and a Honda
Civic Sedan (Car #3). As seen, WiCPD achieves larger than
96.3% detection rate with marginal differences less than 2.47%
among different cars. The slight differences in performance are
mainly because different cars own different materials, struc-
tures, and sizes. Different size will cause different propagation
path lengths/losses of the wireless signal and thus inducing dif-
ferences on the received energy E2

d(f ) [see (6)] bounced off the
dynamic scatterers. On the other hand, cars of different mate-
rials/structures have different impacts on reflecting the in-car
signal and shielding the out-car signal as well.

Independence on Different Children: As the children suffer
from being left alone in a car can age from newborns to six
years old [2], we now evaluate the performance of WiCPD in
detection children over different ages and genders. As shown
in Table II, we recruit five children aging from four months to
four years and ten months old with the permissions from their
parents. Fig. 13 demonstrates that WiCPD can successfully
detect different children with at least 97.25% detection rate.
The detection rate among different children slightly deviates

Fig. 13. Verification for different children (from young to old, Table II).

Fig. 14. Verification for different postures of the children (in or our of the
carseat).

with a maximum of 1.01%, which shows the great ability
of WiCPD to detect child presence regardless of ages and
genders.

Independence on Different Postures: We study the impact of
the postures since a child may demonstrate different postures
in practice. Different from the existing works which use adults
to mimic child for posture control convenience, we use the
baby doll instead. The reason is that adults have larger body
size and stronger chest movement than that of the babies. As
a result, the received energy E2

d(f ) (see (6)) reflected from a
baby and an adult is quite different. In Fig. 14, the face up, face
down, and sit on postures correspond to the data collected by
a baby doll while the carseat is captured from a real baby who
sits in a car seat by law. As shown in Fig. 14, WiCPD achieves
larger than 96.97% for all the postures and thus facilitates the
deployment of WiCPD in practical applications.

Independence on Different Antennas: Fig. 15 evaluates the
detection performance of WiCPD over different commercial
antennas operating in both 2.4 and 5 GHz bands, which
is to examine its potential to integrate with different cars
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TABLE IV
COMPUTATIONAL COMPLEXITY

Fig. 15. Verification for different physical antennas and carrier frequency.

equipped with different antennas. As seen, WiCPD achieves up
to 98.13% and 98.78% by using antenna13 #1 and #2 centered
on 5 GHz, receptively. Overall, WiCPD shows comparable
performance (i.e., within 0.5% difference in detection rate)
for the two different antennas in both 2.4 and 5G systems.
As a result, Fig. 15 sheds light on WiCPD deployment on a
variety of cars with different antennas, if integrated properly.
Moreover, WiCPD is promising to improve its performance
by harvesting more effective bandwidth with the increment
of antennas and bandwith in the future, yet not available at
present.

G. System Overhead

Aiming at practical applications, it is interesting to eval-
uate the system overhead in different aspects. Toward this
end, we analyze both the theoretical computation complexity
and resource consumption of WiCPD in real-time experiments.
To measure the real-time resource consumption, we conduct
long-term experiments in four different cars and carry out two
experiments for each car with a duration of 30 mins for each
trial. A baby doll is used to mimic the trapped child and a toy
car (remote control) is adopted to cause motion once a while.
Here, we choose baby doll for two main reasons: 1) leaving a
child in a closed car for such a long time would cause serious
damages to his/her health and thus is prohibited and 2) our
goal to is evaluate the system latency and consumption which
has nothing to do with the tested object. During the test, we
keep track of the resource consumption by saving the log pro-
vided by top14 command in the Linux system. It is worthwhile
to note that WiCPD can be set up in minutes when deployed
in a new car thanks to its elegant calibration-free feature.

13Antenna #1 is the TE 2118309-1 dual-band Wi-Fi PCB antennas and
Antenna #2 is from the car manufacture for future on car Wi-Fi system which
is anonymized for privacy concerns.

14Top command is typically used to show a dynamic real-time view of
the running Linux system, including the usage of CPU, memory, etc., with a
default updating rate of every 3 s.

Computational Complexity: Recalling that Ns denotes the
spatial links between TX and RX while Nf denotes the number
of subcarriers, Table IV summaries the computational com-
plexity of the three detectors in WiCPD. TM and TB represent
the time window length to estimate the motion statistics and
breathing rate, respectively. TP denotes the length of time lag
covering the first local peak of ACF to estimate the breath-
ing rate and TT is the time window length to calculate the
covariance matrix for eigenvalue estimation. To have a bet-
ter understanding, Table IV includes a typical example of the
computation complexity with TM = TT = 2 s, TB = 12 s,
TP = 8 s, Ns = 4, Nf = 58, fs = 30, and K = 10. Note
that the computational complexity is calculated in terms of
the number of complex multiplication operations (CMs). As
seen in Table IV, the stationary and transition target detec-
tor take much more computational resource than that of the
motion target detector. However, WiCPD detects the motion
target, stationary target, and transitional target in a cascaded
way, thus minimizing the resource consumption in practice.

Resource Consumption: Fig. 16 shows a 10-mins snapshot
of the real-time result and Fig. 17 demonstrates the resource
consumption of WiCPD in terms of CPU and memory running
on a Dual-core ARM Cortex-A7 CPU up to 1-GHz Linux
on the board system. As seen, WiCPD responds timely to
the alternation between motion and stationary situations and
achieves robust CPD detection results with a consumption of
only about 11% of the CPU and 40-MB RAM. Note that
the consumption of CPU and RAM can be further reduced
in practice where we only transmit the necessary binary CPD
detection decision while do not involve a GUI as shown in
Fig. 6, thus saving more resources.

H. Comparative Study

Although we have compared WiCPD with the benchmark
algorithm in Section IV-B, we would like to compare with
more exiting CPD systems [4]–[16], [20]–[25], [63] as sum-
marized in Table I. Yet, few of them have been tested
under such extensive conditions since most of them are
patents [4]–[7], [11], [63], on-line demos [21]–[25] which
focus on methodology and proof of concept verification. As
a result, we briefly categorize the existing work as Sensor-
CPD [4]–[10], PIR Motion-CPD [11]–[13], [63], Vision-
CPD [14]–[16], Radar-CPD [20]–[25], and compare with them
from technical aspects.

Sensor-CPD: Sensor-CPD methods usually equip physical
sensors on the baby seat, such as weight sensor to detect
weight [4], [5], RFID sensors to detect electrical continuity [7],
or the distance between the caregiver and the baby seat [8].
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Fig. 16. 10-mins snapshot of the real-time test.

Fig. 17. Resource consumption of WiCPD in a real-time experiment of 30
mins.

Recent works also use captive sensors to detect the capacitance
between the child body and nearby capacitive sensors [9], [10]
and moreover, the fusion of multiple sensors [6]. While most
of them work well in detecting the child on the baby seat, they
suffer from high false alarm rates since a weight/pressure sen-
sor cannot distinguish a child with an inanimate item as long
as they are of the same weight. In addition, their sensing areas
are limited next to the baby seat which cannot handle the case
if the child falls into the footwell area. However, WiCPD can
cover the entire car space due to its statistical CSI model.

PIR Motion-CPD: PIR Motion-CPD uses infrared sensors to
sense the motion [11]–[13] caused by the child and thus broads
the sensing coverage than traditional Sensor-CPD. Despite of
its prevalence, it is vulnerable to the surrounding temperatures
since it actually detects the temperature of a warm human
body within LoS areas. In this sense, WiCPD outperforms PIR
Motion-CPD since it is environment independent and covers
both LoS and NLoS areas.

Vision-CPD: Vision-CPD methods first capture the interior
image [14]–[16] of a car using a dedicated camera and then
leverage image processing to perform CPD. They are very
accurate especially when combined with the popular machine
learning driven image processing techniques [17]. However,
they call for dedicated camera and good light condition to get
high-quality images and thus prevent its practical applications.
WiCPD greatly eases the task by leveraging the on car Wi-Fi
system regardless of the light conditions.

Radar-CPD: Radar-based methods detect the micro motion,
such as vital motion (i.e., breathing and heart rate motion) as
a indicator of CPD. Recent works also demonstrate potential
CPD candidates using mmWave radars operating on 24, 60,
69, and 79 GHz [21]–[25]. They demonstrate surprising high

accuracy when the target is within the FoV of the radar, by
leveraging the high directionality, angular, and range reso-
lution of mmWave signal due to its high central frequency.
However, there are two sides to every coin. High frequency
also results in rapid signal propagation attenuation and high
directionality makes the mmWave system more sensitive to
the location/posture of the child [20]. While mmWave is very
encouraging, it is not yet to integrate with current on the car
Wi-Fi system (most on 2.4 and 5 GHz) without additional
hardware cost. On the contrary, WiCPD shows better poten-
tial in combination with the existing on the car Wi-Fi system
with almost zero additional hardware cost.

V. DISCUSSIONS AND FUTURE WORKS

A. Multiple Children Presence Detection

Currently, WiCPD mainly demonstrates the presence detec-
tion performance of a single child. However, it can be easily
extended to multiple children scenarios for the following rea-
sons. First, by leveraging motion statistics, WiCPD can detect
the motion of all the dynamic scatters in a constructive way.
In this sense, WiCPD is better at capturing the motion of
multiple children and thus reporting CPD detection since
multiple children are more likely to induce motion than a
single child. When there are multiple children under station-
ary status in the car, the ACF of the CSI will be dominated
by the breathing signal of the child who has the strongest
breathing motion/displacement. Hence, the stationary target
detector of WiCPD can still estimate and check the continu-
ity/duration of the estimated breathing rate to determine CPD.
Similarly, multiple children in transition status trapped in the
car will change the multipath profile inside the car, which can
be detected by the transition detector as well.

B. Future Work

While WiCPD focuses on the CPD, the statistical modeling
accounting for all the multipath components inspires new
opportunities for Wi-Fi sensing-based in-car applications.
First, a direct extension can be in-car vital sign monitor-
ing based on the estimated breathing rate. Driver’s vital sign
can be further leveraged to analyze the behavior of a driver,
such as fatigue and inattentive driving, which we believe
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can expedite the popular ADAS research. Nevertheless, mon-
itoring a driver’s behavior is more challenging due to the
vibrations during driving while WiCPD targets at a parked
vehicle. However, recent works [64], [65] have shown the pos-
sibility to detect/compensate/suppress the unwanted motions
such as by detrending techniques. Second, if we can estimate
the breathing rates for both the driver and passengers dur-
ing driving, it can be prior information to further reduce the
responsive time of WiCPD. Third, occupancy detection (a.k.a.
in car passenger counting) may be enabled using Wi-Fi sens-
ing since the received CSI can be regarded as the superposition
of the breathing signals coming from different individuals, if
any. Consequently, the recently proposed decomposition tech-
niques, such as variational mode decomposition (VMD) [66]
and multivariate VMD (MVMD) [67] can be applied to esti-
mate the mode of the signal and thus indicating the number
of people in a car.

VI. CONCLUSION

This article presents the design, implementation, and eval-
uation of WiCPD, a novel CPD using CSI measurements
extracted from commercial Wi-Fi chipsets. We leverage a sta-
tistical EM theoretical modeling to account for the impact of
a target to all the multipath components. Then, three detec-
tor modules are designed to enable WiCPD regardless of the
child’s status, including motion, stationary, and transition in
between. We implement the system using commercial Wi-Fi
chipsets and deploy it in different cars to detect different chil-
dren of different ages and genders. Extensive results show
that WiCPD can achieve ≥ 96.5% accuracy with a responsive
time less than 20 s. The real-time tests show that WiCPD runs
with affordable computational overhead, making it a promising
candidate for world-wide CPD applications.
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