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ABSTRACT In the era of the Internet of Things (IoT), billions of smart devices connect, interact, and
exchange data with each other. As ‘‘things’’ get connected together, intelligent systems and technologies
have been developed to exploit the rich information in the collected data, perceive what is happening in
the surroundings, and finally take actions to maximize their own utility. Thanks to the ubiquitous wireless
signals and the prevalence of wireless devices, wireless sensing becomes more popular among the various
approaches that have been adopted in the IoT to measure the surrounding environment. Because human
activities interact with wireless signals and introduce distinct patterns to the propagation, analyzing how
wireless channel state information (CSI) responds to human activities enables many IoT applications.
Recently, radio analytics has been proposed as a promising technique that exploits multipath as virtual
antennas, extracts various features from wireless signals, and reveals rich environmental information.
As automobiles continue to play an important role nowadays, manufacturers have been seeking emerging
techniques for IoT applications that support drivers and enhance safety. The interior of an automobile can
be viewed as a special indoor environment where most of the multipaths are restricted inside by the metal
exterior. In this article, we introduce the concept of wireless artificial intelligence (AI) and demonstrate its
concept in a smart car scenario where information about drivers and passengers is collected by commercial
Wi-Fi devices deployed in the car. The proposed wireless AI system is capable of identifying authorized
drivers based on radio biometric information. Vital signals of human introduce periodic patterns to the
wireless CSI. By extracting the vital sign fromwireless signals, the proposed wireless AI system can monitor
the driver’s state, count number of people in the car, and detect a child left in an unattended car.

INDEX TERMS Child presence detection, in-car monitoring, smart car, wireless artificial intelligent.

I. INTRODUCTION
The Internet of Things (IoT) refers to the smart devices and
sensors that are deployed in the environment and connected
so that they can gather, share and integrate information.
Many emerging IoT technologies and systems have been
designed to facilitate people understanding human activities
in surrounding environments. It has been envisioned that
wireless sensing will become a prominent solution to the
IoT applications due to the proliferation of wireless radio
devices, ubiquitous wireless signals, and the rich information
introduced into the wireless signals by human activities.

The feasibility of wireless sensing comes from the fact
that environmental information is recorded in wireless sig-
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nals. Nature provides numerous degrees of freedom that is
delivered through wireless multipath propagation. Multipath
propagation is the phenomenon that the received signal at
the receiver side is a collection of signals traveling from the
same source but through different paths. Due to the large
number of multipaths in a rich scattering indoor environ-
ment, information with a large degree of freedom can be
captured by wireless signals. However, the performance of
wireless sensing highly relies on the information richness
we can decipher from the received wireless signal and it
is determined by the transmission bandwidth. Nowadays,
with advanced wireless communication technologies, more
bandwidths become available and richer information can be
revealed from wireless signals.

As originated from the time reversal (TR) technique, radio
analytics has been proposed as the technique that exploits
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the wireless signal, or more specifically the wireless chan-
nel state information (CSI), extracts various features and
then interprets the environmental information around us [1].
TR technique treats each indoor multipath as a distributed
virtual antenna and generates a high-resolution spatial-
temporal focusing effect, also known as the TR resonance
effect [2]–[4]. The TR resonance effect is a result of the
resonance of the electromagnetic (EM) field in response to
the environment, a.k.a. the interaction between the wireless
signal and its multipath propagation [5]. When the indoor
environment changes, the multipath propagation varies
accordingly and it results in a decrease in the TR resonance
strength. Along with the TR technique, various radio analytic
techniques have been developed to analyze radio signals,
decipher the embedded environmental information, and sup-
port different IoT applications.

On one hand, human activities or moving objects introduce
dynamics to the propagation of wireless signals. By deploy-
ing wireless sensors, extracting and analyzing various fea-
tures implanted in wireless signals, one can infer macro
changes in the indoor environment, such as indoor events
detection [6]–[9], human activities recognition [10]–[17],
indoor positioning [18]–[27], gait recognition [28]–[30] and
tracking [31]–[34]. Moreover, one can also detect micro
changes including hand gestures [35], [36] and vital signs
[38]–[41] without requiring any wearable devices. Those IoT
applications can be an ideal solution to home and office
security systems, human activity recognition systems and
well-being monitoring systems. On the other hand, each
human body will introduce unique perturbations to the wire-
less signals, through absorbing, reflecting and scattering
wireless signals [42], [43]. The static wireless propagation
pattern interacted with a human body is defined as human
radio biometrics, which is determined by individual biolog-
ical characteristics. With the help of radio analytics, indoor
human recognition now can be achieved through a non-vision
based technique through radio biometrics [44].

Due to its on-demand transportation, mobility, indepen-
dence, convenience, and comfortableness, automobiles have
become a daily commodity with surging demand and preva-
lence. According to the report [45], [46], the number of
worldwide automobiles on-the-road has reached 1.2 billion
by 2017 and the U.S. vehicle ownership per household
achieved 1.97 in 2016. In the past decade, automobile man-
ufacturers and researchers have been working on innovative
solutions that leverage emerging sensor technology to support
the driver and enhance the safety, e.g., driver monitoring
system to detect distraction and fatigue [47]–[51].

In contrast to most of the existing in-car techniques which
require contact sensors and cameras [52], radio analytics that
relies only on wireless signals is a promising solution to
smart car monitoring. Nowadays, many car manufacturers
are adding built-in Wi-Fi equipment to their new vehicles
and internet providers are collaborating with them to provide
cheap and fastWi-Fi service. Secondly, superior to traditional
sensors,Wi-Fi not only acts as an in-car sensor but also serves
to connect passengers and drivers to the internet. On the other

hand, what makes Wi-Fi an ideal solution for in-car sensing
is that it can work under the circumstances of obstructions
thanks to the multipath propagation, which is impossible for
traditional sensors and cameras. The interior of a car can
indeed be viewed as a special indoor environment where most
of the multipaths are confined inside the car because of the
metal exterior. By deploying wireless radio devices in a car,
radio analytics can enable many IoT applications specialized
for automobile uses that have been envisioned for a long time
but not been accomplished yet.

In this article, we will present the concept of wireless
artificial intelligent (AI) which performs radio analytics, per-
ceives the environment, and then takes optimal actions for
different applications [53]. We demonstrate the capability of
wireless AI through a smart car scenario. We first provide
an overview of fundamental concepts of radio analytics and
the multipath harvesting. Then we define the smart car sce-
nario and propose to use a single pair of commercial Wi-Fi
devices to achieve 4 different IoT applications, including
driver authentication, vital sign monitoring, passenger count-
ing, and unattended child detection for parked cars.

To begin with, we first introduce the wireless AI driver
authentication system that only allows an authorized driver
to operate the car, guaranteeing the security and safety
of automobiles. With a pair of commercial Wi-Fi devices
deployed in the car, the biological information of the driver
will be recorded by wireless signals. The proposed wireless
AI smart car system extracts the radio biometric information
of the driver and achieves accurate driver recognition and
authentication. We further demonstrate how the proposed
wireless AI system captures vital signs from the wireless
signals to assist driver state monitoring, passenger counting
and unattended child detection. By analyzing the periodic
pattern implanted in thewireless signal, the proposedwireless
AI system can monitor the real-time breathing rate of the
driver, which serves as an important indicator for health
and fatigue in driver state monitoring. Moreover, by per-
forming further analysis of the vital features recorded in
the CSI, the proposed wireless AI system can count the
number of people in the car. Inspired by the in-car vital
monitoring, the proposed wireless AI system is also capa-
ble of detecting whether a child is left unattended in
the car, which is extremely dangerous and even can be
fatal [54]. Finally, we will survey and discuss recent related
works.

II. CHALLENGES AND CONTRIBUTIONS
Challenge 1: Traditional dedicated sensors in the car require
line-of-sight between the sensors and the objects being mon-
itored.

This work presented a novel concept of wireless artificial
intelligence (AI) that perceives the propagation environment
with a pair of Wi-Fi devices through radio analytics and
demonstrated the concept with a smart car scenario. Thanks
to the multipath propagation of wireless signals, the proposed
Wi-Fi based in-car sensing system can perceive the environ-
ment even when there are obstructions.
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Challenge 2: Previous wireless-sensing-based human
identification systems are susceptible to changing CSI
because that the indoor/in-car environment always changes
over time.

This work proposed an in-car Wi-Fi-based driver authenti-
cation systemwhich addresses the challenges of varying envi-
ronment by means of machine learning (ML). The proposed
ML based system can generalize consistent radio biomet-
ric information from collected CSI samples captured under
changing environments in a car.
Challenge 3: Current in-car driver monitoring systems

require either cameras or contact sensors to monitor the bio-
logical signals of a driver, which may be distracting or have
privacy concerns.

This work proposed an in-car vital sign monitoring sys-
tem that estimates the breathing frequency of the driver by
extracting the periodical pattern from the captured time series
of CSI. Because of the multipath propagation of wireless
signals, the proposed system can be installed away from the
driver and the passengers to ensure privacy and safety.
Challenge 4: In current vehicles, the number of passengers

inside a car is estimated through pressure sensors installed
under each seat and the accuracy is low because the pressure
sensor can be triggered by heavy objects like luggage while
it may fail to respond to a child of lightweight.

This work proposed a novel method of people counting by
identifying and counting distinct human breathing rate traces
in the environment, even without line-of-sight between the
monitored individuals and theWi-Fi devices. A dynamic pro-
gramming (DP) based trace tracking algorithm was designed
that extracts and tracks breathing signals of different individ-
uals in the car from the time series of CSI captured by a pair
of commercial Wi-Fi devices.
Challenge 5: Existing child presence detection (CPD) sys-

temsmay fail to detect the presence of a childwhen theweight
of the child is too light for a pressure sensor or the child is
blocked from the line-of-sight of a camera.

This work proposed a novel in-car CPD method that uti-
lizes Wi-Fi multipath propagation to detect the dynamics
introduced by child movement or breathing and has no blind
zone.

III. RADIO ANALYTICS: FUNDAMENTALS
Wireless sensing takes advantage of a large number of
degrees of freedom provided by nature by means of radio
multipath propagation. When a signal encounters a scatterer
in the environment, an attenuated copy of the original signal
is generated and will travel through a new path. Because of
the existence of the scatterers in the environment, the trans-
mit signal emitted from the transmitter (TX) arrives at the
receiver (RX) through different propagation paths and the
channel between each TX-RX antenna becomes a multipath
channel. This is known as multipath propagation. An illus-
tration of a multipath channel is depicted in FIGURE 1. The
red line represents the line-of-sight (LOS) path from the TX
to the RX, while the blue arrows plot the reflected/scattered

FIGURE 1. Illustration of virtual antennas [55].

path by scatterers in the environment. All the paths form
a multipath propagation channel between the TX and
the RX [55].

Because an attenuated copy of the original signal is
generated and transmitted through a different path when the
transmit signal gets reflected or scattered by a scatterer, each
multipath acts as a virtual antenna and/or sensor in the envi-
ronment that collects and transmits the replica data from a
different spatial location, providing an extra degree of free-
dom. The channel characteristics between the virtual antenna
and the real antenna are determined by the radio paths both
between the TX and the scatterer and between the scatterer
and the RX. Daily activities involve motion and human body
movements which can be viewed as groups of moving scat-
terers/virtual antennas in the environment. As the radio signal
propagates back and forth between the scatterers, the charac-
teristics of the virtual antennas are recorded in the multipath
CSI, and so does the information about indoor activities. The
performance of wireless sensing depends greatly on how rich
the CSI can be. The transmission bandwidth determines the
spatial resolution of the CSI to reveal different multipath
components.

Through channel sounding, real-time CSI can be estimated
that records the information of all scatterers in the envi-
ronment encountered during the radio propagation. In an
environment with Kmax independent multipath components
existing between the TX and the RX, the multipath channel
h(t) is defined as collections of different radio propagation
paths,

h(t) =
Kmax∑
k=1

αkδ(t − τk ), (1)

where αk is the multipath coefficients of the k-th independent
multipath component and τk is the time delay associated
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FIGURE 2. Multipath channel vs bandwidth. (a) Measured channel under 20 MHz bandwidth (LTE standard). (b) Measured channel under
40 MHz bandwidth (the IEEE 802.11n standard). (c) Measured channel under 125 MHz bandwidth (entire ISM 5G band) [55].

with αk . The function δ(·) is the delta function. Note that,
the delay spread of the channel is τ = maxk τk .
However, due to the limited transmission bandwidth B,

the estimated discrete-time channel hT at the receiver side
is a sampled version of h(t), i.e.,

hT [l] =
∫ l

B

l−1
B

P
( l
B
− t
)
h(t)dt, l = 0, 2, · · · ,L − 1, (2)

where P(·) is the window function with length 1/B. Because
signals with time-of-filght (ToF) difference equal to or larger
than 1/B can be separated under a bandwidth B, a larger
bandwidth enables a higher sampling rate to sample analog
signals received from different paths and resolve more multi-
path components.

Examples of multipath channels captured under the
aforementioned bandwidths at the same location in a
rich-scattering environment are plotted and compared
in FIGURE 2, demonstrating the relationship between band-
width and multipath resolution. As projected in 5G, high
carrier frequencies with larger bandwidths will be adopted
in future wireless communication systems [56], which makes
the multipath channel with a good spatial resolution feasible.
With more and more bandwidth readily available for the
next generation of wireless sensing, many more smart appli-
cations/services will come true, because richer information
becomes available with a wider bandwidth.

With rich information embedded in the radio signals, now
the challenge is how to utilize it to help people perceive and
understand surrounding activities. Various techniques have
been proposed to harvest information from themultipath CSI.
By treating each multipath components as a virtual antenna
that transmits probing signal coherently (a.k.a., TR transmis-
sion process [57]), TR technique generates a high-resolution
spatial-temporal resonance, which can be viewed as the result
of the resonance of EM field in response to the environ-
ment [5]. As long as a change occurs on either the device or
any scatterer in the environment, the corresponding multipath
channel between the TX and the RX changes accordingly.
Consequently, the TR spatial-temporal resonance changes,

which in return indicates the changes in the propagation
environment.

Inspired by the fundamental physical principle of TR,
Radio analytics has been proposed as an emerging technol-
ogy that infers the propagation environment and extends the
human sense over the world [1]. By fully exploiting the rich
multipath CSI, various types of radio analytics based on the
wireless channel state information has been developed to
enable many cutting-edge IoT applications indoors, includ-
ing positioning and tracking, vital monitoring, indoor event
detection and activity recognition, and human identification,
as we will discuss in Section IX.

IV. SMART CAR MONITORING
As the most widely accepted and popular method of trans-
portation, automobiles have become a necessity and essential
part of people’s everyday life and profoundly changed the
way people live all over the world. In spite of its benefits
in on-demand mobility, convenience, and comfortableness,
the prevalence of automobiles has also brought up risks
including road safety and environmental pollution. Over the
decades, as automobiles brought various influences to every
aspect of the society, innovative technologies have been
introduced to automobile for driving assistance and safety
enhancement.

A. DRIVER STATE MONITORING
Road safety is always the top concern for automobiles.
Statistics show that a lack of driver’s attention during driv-
ing due to sleepiness, distraction, drowsiness, and stress
is the major factor in vehicle crashed accidents. Accord-
ing to [58], 94% of crashes in the United States between
2005 and 2007 were attributed to drivers, such as recognition
errors due to inattention, decision errors, performance errors,
and non-performance errors like sleep. Research and indus-
try have been developing in-car driver monitoring systems
to avoid driver risk factors and bad driving operation in
advance [52], [59], [60]. Current technologies implement
in-car driver monitoring by means of cameras [49], [61], [62]
and physiological sensors for electroencephalogram (EEG)

55094 VOLUME 8, 2020



Q. Xu et al.: Wireless AI in Smart Car: How Smart a Car Can Be?

or/and electrocardiogram (ECG) signals [52], [63]–[65].
Recently, a Wi-Fi-based driver distraction monitoring system
was proposed by Raja et al. to detect unusual head turns and
arm movements by leveraging features in the CSI [66].

B. AUTHORIZED DRIVER IDENTIFICATION
Another important factor that impacts automobile safety is
that automobiles nowadays can be operated by anyone with
access to the car key, and driving by an unauthorized driver
can lead to an increased risk of a crash. Automobile driv-
ing is an activity where the driver has to be able to simul-
taneously watch for surroundings, control and operate the
vehicle, manage unexpected events, and make decisions. For
example, younger and particularly novice drivers, who have
little knowledge of driving or have no driver’s license, lack
sufficient skills to recognize or anticipate road hazards and
often tend to speed. It is important that the future smart car
can leverage biometric information of each individual and
perform identity recognition to allow driving by authorized
drivers only.

C. PASSENGER MONITORING
While most advanced technologies for the smart car focused
on driver state monitoring, limited research has been con-
ducted for in car passenger monitoring. For most of the
automobiles today, pressure sensors are installed under a seat
to detect seat occupancy and enable associated air bags. How-
ever, pressure sensors tend to fail in distinguishing between a
human body and an item with a similar weight. In the era
of IoT, many techniques have been developed with which
various sensors can sense the activities in an environment,
including human vital signs. By analyzing the vital signs,
it is possible for a smart car to monitor the well-being of
passengers and even count how many people sitting inside.

D. CHILD PRESENCE DETECTION (CPD)
Children left inside an unattended car can be extremely
dangerous. According to the report in [54], an average
of 38 children die of heatstroke inside hot vehicles each
year, and there is a total of 792 Pediatric Vehicular Heat-
stroke (PVH) deaths that have been documented in the United
States for the period from 1998 to 2018. Among those, 53.9%
of the PVH deaths are due to that parents left their child in
the car and 26.4% are due to the child having gained access
to the car without letting the parents know. However, because
most of the kids are put inside a car seat on the back seat
and the weight is light, current pressure sensors and cameras
fail to detect their presence. Hence, it is critical and urgent to
develop in-car monitoring systems that can detect promptly
when a child is left inside a locked car even with obstruction
and thus avoid such a tragedy.

Although researchers and manufacturers focus on develop-
ing techniques to address the aforementioned problems, they
often require various sensors dedicated to each application.
Unlike dedicated sensors which can only be used for sensing,
Wi-Fi is superior in that it can serve as both in-car sensors

FIGURE 3. Illustration of in-car multipath propagation.

and in-car connection devices to connect passengers and
drivers to the internet while traveling. A car is a special case
of rich scattering indoor environments where radio waves
bounce back and forth by the metal exterior, as illustrated
in FIGURE 3. First, the interior of a car is like a metal box
with most of the multipaths only traveling inside, because
radio waves cannot penetrate metal. Second, the movement
of the car will not affect the propagation inside a lot, since the
transmission, engine, wheels are all located outside the main
cargo which is concealed by metal. Moreover, as we tested
and verified in the experiment [67], the outside environment
changes will not affect the multipath environment inside the
car. Hence, the interior of a car can be viewed as an indoor
environment with rich multipath propagation and its moving
status will not impact a lot on RF sensing.

Given the plentiful multipaths inside a car, radio ana-
lytics provides a feasible and promising solution to smart
car applications. Thanks to the multipath propagation, activ-
ity and biological information of people inside a car can
be sensed and captured, which supports wireless sensing
applications on identity recognition and vital monitoring.
Anomaly detection can also be realized for a parked car by
detecting dynamic changes in the CSI. Because most of the
multipaths are restricted inside the car, outside activities can
hardly introduce false alarms. In this article, we propose a
wireless AI system for smart car such that with a single pair
of commercial Wi-Fi devices deployed in the car, the in-car
environmental information can be extracted from the wireless
signals that reveals the enriched information of driver iden-
tity, driver vital state, passenger well-being, and the presence
of a left child in a parked car. In the following sections,
we will discuss the details of the proposed wireless AI smart
car system and demonstrate its capability of assisting drivers
and improving the safety of automobiles.

V. DRIVER AUTHENTICATION WITH Wi-Fi
One of the potential threat to automobile safety is that any-
one with access to the car key can operate the car. Since
automobile driving is a highly demanding activity, driving
by an unauthorized or/and unqualified driver may increase
the chance of car accidents and impose threats to road
safety. In this section, we propose aWi-Fi-based in-car driver
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FIGURE 4. Demonstration of changes for in-car environment along the
time.

authentication/recognition system that can accurately recog-
nize the driver identify, and thus it can serve as a promising
security and safety enhancement tool for future smart cars.
Driver authentication also aims to facilitate automatic per-
sonal adjustment of temperature, seat and mirror positions in
the car, based on the identity of the recognized driver.

Radio biometrics is the pattern of a human body introduced
to the wireless propagation environment and is determined by
the unique biological characteristics of each individual [44].
According to the literature, the wireless propagation around
the human body highly depends on the physical characteristic
(e.g., height and mass), the total body water volume, the skin
condition and other biological tissues. Researchers have stud-
ied the relationship between the EM wave absorption of
human bodies and the human physical characteristics [43],
the interaction of EM waves with biological tissue [42]
and the dielectric properties of biological tissues [68], [69].
Hence, considering the combination of all the physical char-
acteristics and other biological features that affect the propa-
gation of electromagnetic waves around the human body and
how variable those features can be among different individu-
als, the radio biometrics is unique for everyone and thus can
be used for identifying individuals.

As wireless signals propagate inside the car, the CSI
obtained from the in-car Wi-Fi devices has the multipath
information characterizing the in-car environment, and the
radio biometric information of the driver sitting inside the car
will also be recorded in the CSI. In this section, we leverage
CSI that contains individual radio biometric information as
the sample to identify drivers and use ML techniques to
generalize radio biometric information for each driver and
overcome the data uncertainty due to noise and dynamics
recorded in the CSI. We implement accurate driver identifi-
cation and verification with commercial Wi-Fi devices in a
smart car scenario.

A. CHALLENGES
The CSI obtained from the commercial Wi-Fi devices has the
multipath information characterizing the in-car environment.

FIGURE 5. Location of transceivers in the car.

Since the wireless signal reaches the receiving antenna from
more than one path, the human radio biometrics are implicitly
embedded in the multipath CSI profile. The human body
may only affect a few paths to the multipath CSI, and the
energy of those paths is small due to the low reflectivity and
permittivity, compared with other static objects such as the
walls and furniture. As a result, the human radio biometrics,
captured through radio shot [44], are buried by other useless
components in the CSI. In other words, the CSI obtained
from the radio shot of a person is highly correlated with
the environment. In reality, this in-car environment keeps
changing with time. Hence, when the in-car environment is
altered, the CSI containing the driver radio biometrics is also
changed. The proposed system, therefore, should be adaptive
to these changes.

In the proposed system, machine learning (ML) models
are used to address the problem of ‘‘changing in-car envi-
ronments’’ using a radio biometric data set. The driver radio
biometric data set was built using radio shots of five individ-
uals collected over a period of two months in a car parked at
different locations in a public parking lot. The data set is used
to understand the dynamics of the in-car environment and its
effect on the human radio biometrics. The radio biometrics of
each driver is captured with a commercial Wi-Fi devices that
are deployed in the car as shown in FIGURE 5.

B. METHODOLOGY
In the proposed wireless AI driver authentication system,
we address the problem of in-car environmental changes.
We build the first multiple-driver radio biometric database
consisting of radio biometrics of seven people collected over
a period of two months. With the help of the database,
we integrate ML techniques to make the proposed driver
authentication system adaptive to different in-car environ-
ments. We present details of the ML techniques we adopted
in the following.

1) K-NN
In the proposed in-car driver authentication system, each day
a new in-car environment is presented. This new in-car envi-
ronment can be viewed as a new instance of the problem and
instance-based learning methods are an intuitive choice [70].
Among these,K -nearest neighbor rule is the simplest one and
we use it as a baseline for the performance comparison.
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FIGURE 6. Architecture of proposed neural network.

2) SVM
The radio biometric data is high dimensional and is
not always linearly separable. Support vector machine
(SVM), which belongs to the class of kernel methods,
projects the data to a high dimension where it is lin-
early separable and finds the best hyperplane which can
do the classification with maximum margin [71]–[73].
In this article, we evaluate the system using linear and
RBF kernels.

3) NN
Neural networks (NN) have been extremely successful in the
fields of computer vision, image processing and have a vast
variety of applications.We evaluate the proposed in-car driver
authentication system using a neural networkwith two hidden
layers and ReLU activation. The architecture of the NN is
shown in FIGURE 6. The hyper-parameters are determined
using the cross-validation technique.

4) GROUPING
We have seen that the CSI is very sensitive to changes in
the in-car environment. Along with the changes in the in-car
environment, the variations in the seating position of the
driver also causes changes in the received CSI. To make
the proposed in-car driver authentication system robust to
such changes, we adopt the grouping technique. During the
data collection, for each session of the test, four radio shots
are recorded with the recording of the empty car CSI in
between them. These four radio shots are sent through theML
model to obtain a combined decision. FIGURE 7 explains the
grouping technique in a NN. We index the four radio shots
as i, i = 1, 2, 3, 4. In the case of an NN, let PAi and PBi
represent the predicted class probability of the ith radio shot
under class A and class B, respectively. Then the identity of
the driver is determined as class A if 6PAi > 6PBi and
vice versa.

FIGURE 7. Demonstration of the proposed grouping method.

C. EXPERIMENTAL RESULTS
To evaluate the performance of the proposed in-car driver
identification system, we build a in-car driver authentication
database for a total of 5 test subjects who are addressed as
A, B, C, D, and E. We build the system prototype with a pair
of commercial Wi-Fi devices. The TX has 2 omnidirectional
antennas and the RX has 3 omnidirectional antennas. The
CSI, a.k.a. the radio biometrics, is captured when each test
subject sits in the driver seat with the carrier frequency being
5.805 GHz and the bandwidth being 40 MHz.

Using the ML models described in the previous section,
we evaluate the performance of the proposed system using
the in-car driver authentication database. Since the amount of
data is limited compared to what most ML methods require,
we use the cross-validation technique to report accuracy [74].

1) TWO-DRIVER AUTHENTICATION
In two-driver authentication, we differentiate between two
authorized drivers by solving a two class problem. This
scenario can serve a similar purpose as the existing mem-
ory seating facility in cars and provide driver authentica-
tion simultaneously. Table 1 shows the performance of the
two-driver authentication using different ML models for all
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TABLE 1. Performance of two driver authentication.

TABLE 2. Performance of two driver authentication with grouping.

possible sets of two drivers from the database.We can observe
that in most cases, the NN performs the best with comparable
accuracy to SVM and a significant margin over the k-NN
accuracy. Table 2 shows the performance of the two-driver
authentication using the grouping technique. We can observe
that in all the cases, the grouping technique significantly
improves the performance of an NN.

The ML models allow the system to become adaptive to
changes in the in-car environment. These models require
sufficient data to draw inferences and detect patterns in the
data. FIGURE 8 shows a moving average of the performance
of an NN with an increasing amount of data. The system,
therefore, becomes smarter and smarter with time as more
and more data points become available.

D. NOVELTY AND LIMITATION
The earlier human recognition works were proposed for
indoor environment and relied on time-reversal techniques to
match similar radio biometrics embedded in the CSI. The pro-
posed driver authentication system first identified the prob-
lem of previous work being vulnerable to indoor environment
changes through long-term data acquisition and then applied
different techniques including SVM and ML algorithms to
overcome the environmental changes. Considering the preva-
lence of cloud storage and cloud computing, the proposed
driver authentication system could send CSI back to the cloud

FIGURE 8. Performance of smart learning: accuracy grows with time.

for offline training and reload the trained model on the device
for classification. Hence, the computation overhead and the
delay in terms of identifying a driver should be small.

In this work, we conducted monitoring and experiment on
5 test subjects. On one hand, as the first attempt to propose
the idea of identifying drivers in a car using Wi-Fi signals,
the current work has been conducted to prove the concept
of in-car driver authentication with Wi-Fi. It is difficult to
conduct experiments that involve tens and hundreds of test
subjects at this very first stage. On the other hand, as in a
typical use case of household cars, the number of daily drivers
for a car is two, e.g., husband and wife. Even if we consider
children as potential drivers, the total number of drivers will
most likely be less than 5.

VI. IN-CAR VITAL SIGN MONITORING WITH Wi-Fi
As an important metric of vital signs, respiratory rate is the
number of breaths one takes per minute and is used as a
measurement of the body’s basic functions for assessing the
general physical health of a person. The normal respiration
rate for an adult is generally between 12 and 20 breaths
per minutes (BPM). One tends to have a lower BPM during
relaxation, whereas performing demanding cognitive tasks
could affect his respiration rate, e.g., lead to a higher than
normal BPM [75]. Breathing rate is an important vital sign
indicating the health status for both the driver and the pas-
sengers. Conventional approaches to measuring the breathing
rate involve a flow sensor to be put close to one’s nose/mouth
or a belt sensor to wrap one’s chest, which may affect the
driving performance severely due to their uncomfortable,
disturbing and distracting nature.

Not only can CSI capture environmental perturbations due
to macro human activities and radio biometrics, but it can also
record subtle changes introduced by human respiration. The
breathing induced chest movement introduces a periodic per-
turbation to the wireless propagation. Hence, because of its
periodic pattern recorded by the wireless signals, the human
breathing information can be extractedwith high fidelity from
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the CSI time series. In this section, we present the wireless AI
vital monitoring system for a smart car scenario that tracks the
breathing rate for the driver and the passengers and monitors
their well-being.

A. CSI MODEL UNDER BREATHING IMPACT
To better understand the impact of breathing on CSI, we start
with a time-varying channel frequency response (CFR)
model. In the presence of propagation perturbations caused
by chest movement, the CFR of the m-th link at time t is
modeled as

h(m)T (t, fk ) =
L∑
l=1

al(t) exp(−j2π fk
dl(t)
c

)+ n(t, fk ), (3)

where k ∈ V is the subcarrier index with center frequency fk
in the set of usable subcarriers V , and the number of acces-
sible subcarriers is Nsc. L is the total number of multipath
components (MPCs), while al(t) and dl(t) denote the com-
plex gain and propagation length of MPC l. c is the speed
of light and n(t, fk ) is the additive white Gaussian noise. For
the system with multiple antennas, there are NTX ∗NRX links
in total, where NTX and NRX is the number of transmitter
antennas and receiver antennas respectively.

Due to the perturbation introduced by breathing, gains and
delays of one or more multpaths change along the time and
the CFR exhibits periodic variation. In the following analysis,
we consider the case when there is one person sitting in the
car whose breathing cycle is Tb seconds. Later, we will show
that the single subject vital monitoring can be easily extended
to a multiple-person case.

TheMPCs in (3) can be classified into two sets:�s and�d .
�s denotes the set of time-invariantMPCs and�d denotes the
set of time varying MPC, due to the reflection and scattering
of the human body. Thus, the gain of MPCs in �d can be
modeled as [41]

al(t) = al × (1+
1dl
dl

sinθ · sin(
2π t
Tb
+ φ))−9 , (4)

where al and dl represent the gain and the path length of the
MPC without breathing impact, 1dl denotes the additional
positional displacement (a.k.a., path length difference) of the
MPC in �d caused by the chest movement due to breathing,
θ is the angle of incidence between the human body and
the EM wave, φ indicates the initial phase of breathing, and
9 is the path loss exponent. Since the path length difference
due to chest movement is much smaller than the path length,
i.e., 1dl � dl , we can approximate the MPC gain al(t) with
the time-invariant MPC gain al .

B. BREATHING RATE ESTIMATION
In the proposed system, we utilize the CSI amplitude infor-
mation to model the breathing signal recorded by the wireless
propagation, considering that the phase of h(m)T (t, fk ) is cor-
rupted by the phase noise caused by timing and frequency
synchronization offset in the real measurement. Given the

periodic chest movement introduced by breathing, we can
have

|h(m)T (t, fk )| = g(fk )b(t −1tfk ), (5)

where g(fk ) denotes the channel gain and 1tfk represents the
initial phase of the breathing signal b(t) on the subcarrier with
a center frequency fk .

Although the channel profile exhibits a periodic pattern
when there exists only one person in the coverage area,
it is not straightforward to analyze the periodicity in the
time-domain breathing signal for the multi-people case.
We develop a method to estimate multiple breathing rates
from the frequency spectrum of |h(m)T (t, fk )|, because the
frequencies of multiple individuals’ breathing can be isolated
in the frequency domain. In particular, our system analyzes
the time series of CFR amplitude on each subcarrier in the
frequency domain by using power spectrum density (PSD).
In addition, since the breathing rate is limited in a cer-
tain range, a band-pass filter is applied over the frequency
spectrum to enhance the estimation accuracy. The steps are
described as follows.

1) Fourier Transform:We first apply a sliding window of
lengthW∗Fs to the captured CSI time series on the time
domain, and then obtain the frequency spectrum by
performing a fast Fourier Transform (FFT) over each
time window. Here, Fs is the sounding rate, and W is
the window length in seconds. FIGURE 9 demonstrates
an exemplary PSD of 3 breathing signals recorded
in a 60-second CSI time window. In FIGURE 9, the
x-axis denotes the Fourier frequency index (a.k.a.,
BPM), the y-axis represents the subcarrier index, and
different color represents the energy of the PSD.

2) Subcarrier Selection: The sensitivity of each subcarrier
to different breathing signals is different as shown in
FIGURE 9, where different subcarriers exhibit differ-
ent PSD values for the same breathing frequency. To get
a better breathing rate estimation, for each frequency
indexes (a.k.a., BPM), we select the subcarrier with
the highest signal-to-noise ratio (SNR), i.e., picking the
subcarrier whose PSD value is above a pre-selected
threshold. After selecting the best subcarriers for all
frequency components, the total spectrum energy of
each link is normalized to 1. At the end of this step,
each heat-map in FIGURE 9 is projected to a 2-D PSD
plot as shown in FIGURE 10.

3) Link Combination: As demonstrated in FIGURE 10,
different TX-RX links have different quality and are
sensitive to different breathing signals. To further boost
the breathing estimation accuracy, we fuse the informa-
tion from all TX-RX links and obtain the final PSD by
summing up the normalized spectrum energy of each
frequency component on different links. An example
is given in FIGURE 11, where information from all
subcarriers and TX-RX links captured in the same CSI
time window is fused into one PSD plot.
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FIGURE 9. The PSD of breathing signals on all subcarriers over different TX-RX links calculated from a 60-second CSI time
series. The title of each subplot (tx, rx) = (i, j ) indicates the link between the i -th TX antenna and the j-th RX antenna. The
CSI is captured through a 3-by-3 MIMO transmission under 10 Hz sounding rate with ground truth being 3 people in a car.

FIGURE 10. The PSD of breathing signals after subcarrier selection over different TX-RX links with the title (tx, rx) = (i, j)
indicating the link between the i -th TX antenna and the j-th RX antenna (Ground truth being 3 people in a car).

4) Peak Detection: After getting the PSD plot as shown
in FIGURE 11 for each time window, we can obtain
the final spectrogram by concatenating the PSD of
different windows along the time axis. An example of
the final spectrogram of breathing signals is depicted
in FIGURE 12 and the CSI is captured when 3 test

subjects are sitting in the car. We can extract the breath-
ing rate from the spectrogram by selecting the first
strongest m peaks in the PSD for each time instance,
where m = min{M ,M ′} is the minimum number
between the maximum passenger capacity M and the
number of peaksM ′ whose spectrum strength is above
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FIGURE 11. The PSD of breathing signals after TX-RX link combination
and normalization and three BPM energy peaks can be observed (Ground
truth: 3 subjects in car).

FIGURE 12. The final spectrogram of breathing signals extracted from the
60-second CSI time window (Ground truth: 3 subjects in car).

a predefined energy threshold. The estimated breathing
rates correspond to the BPM indexes of the selected
peaks.

C. EXPERIMENTAL RESULTS
To evaluate the performance of breathing monitoring,
we monitor the breathing rate of multiple people and com-
pare the breathing rate estimation with the ground truth. The
breathing signals of test subjects are monitored and captured
using a pair of commercial Wi-Fi devices. We deploy the TX
and the RX as shown in FIGURE 5 and the prototype trans-
mits over the 5-GHz Wi-Fi band under a 40 MHz bandwidth
and a 30 Hz sounding rate.

Denote the ground truth of person i’s breathing rate as bi
and we assume individual breathing rate is constant during
the test. We keep monitoring and collecting the CSI for a
duration of T and apply a sliding window with length W
over the CSI time series. The stride between consecutive CSI
windows isWs. For each window, a breathing rate estimation

FIGURE 13. Accuracy of breathing estimation with different number of
people simultaneously in the car.

is obtained and thus in total we have I = bT−WWs
c + 1

estimations for the CSI series of length T .
The accuracy of estimation is defined as

Accuracy =
(
1−

1
I × N

I∑
i=1

N∑
n=1

∣∣∣bn,i − bn
bn

∣∣∣)× 100%,

(6)

where I is the total number of breathing estimations, N is the
total number of test subjects, and the breathing estimation for
the n-th test subject in the i-th window is denoted as bn,i, given
his/her ground truth breathing rate as bn.
As shown to FIGURE 13, up to 4 people are invited into

a car for vital sign monitoring. The accuracy for breathing
estimation when only 1 test subject is in the car is about 96%.
The accuracy drops as the number of people increases. This
is because the breathing strength of some test subjects may
be much smaller than that of others’ breathing signal at some
time instances, i.e., the SNR of the weak breathing signal is
significantly lower than others. Consequently, the proposed
systemmay fail to decode that weak breathing signal, leading
to a miss detection.

VII. IN-CAR PASSENGER COUNTING WITH Wi-Fi
Accurate and reliable crowd counting that estimates the num-
ber of people in a given environment is important for future
smart car application. For instance, the control panel can
automatically adjust the ventilation based on the occupancy
level, which can decrease the energy consumption for the car.
In-car passenger counting also enhances automobile safety
in that it can support smart in-car safety functionality like
activating airbags based on the number of passengers in the
car.
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Nowadays, crowd estimation is mainly based on the video
signal, which compromises user privacy. Although there are a
few works using RF signal to estimate the number of people,
their approaches are mainly based on relationship between
the number of moving people and the variation of CSI, which
is invalid for the smart car environment, where people are
sitting quasi-statically. Inspired by the in-car breathing rate
estimation system presented in Section VI, we propose a
wireless AI crowd counting system that can extract distinct
traces of independent vital signals and thus estimate the
number of people. The proposed system provides a solution
to future smart car passenger counting based on the RF signal
in a car.

Specifically, as the Wi-Fi device keeps sensing the in-car
environment, the obtained time series of CSI contains the
breathing signals of each individual in a car. The rate of a
breathing signal at a specific time stamp can be estimated
by means of the vital sign estimation algorithm described in
Section VI. In this part, we will present a dynamic program-
ming based tracking algorithm, which is capable of iteratively
separating and recognizing the trace of estimated breathing
rate of different individuals, and thus counting the number of
people in a car. The details are as follows.

A. THE MARKOV CHAIN MODEL FOR HUMAN BREATHING
Human breathing introduces a periodic signal which
smoothly changes over time. Based on the fact we state in
Section VI, a person’s continuous breathing should corre-
spond to a smooth trace in the frequency spectrum extracted
from the CSI time series, as demonstrated in FIGURE 12.
Thus, the crowd estimation problem can be solved by deter-
mining how many traces exist in the observation time.

When there are multiple persons in the same wireless
propagation environment, there will be multiple breathing
rate traces existing in the same spectrogram, as shown in
FIGURE 12. In order to resolve multiple breathing rate traces
captured by the wireless signal, we propose an iterative algo-
rithm that repeatedly identifies the most significant breathing
rate trace from the current spectrogram and then eliminates
the identified trace from the spectrogram until there is no
breathing rate trace remained. To demonstrate the proposed
algorithm, we start with a single trace scenario.

Let S ∈ RI×J
+ be the frequency spectrogram obtained from

the CSI time series. I denotes the total number of breathing
rate estimations along the time, I = b(T−W )/Wsc+1, where
T denotes the total length of CSI time series, W represents
the length of sliding window for calculating FFT, and Ws is
the stride of the sliding window. J denotes the total number
of discrete frequencies whose resolution is determined by
the CSI sounding frequency and the number of FFT points.
Moreover, a breathing rate trace f on the spectrogram S can be
expressed as a sequence of estimated breathing rates, i.e., f =
{f (i)}Ii=1, where f (i) represents the estimated breathing rate
at the given time stamp i. Let S

(
i, f (i)

)
denote the spectrum

strength of the estimated breathing rate f (i), the total energy

of a trace is defined as the total sum of the spectrum strengths
of estimated breathing rate, i.e., E(f) =

∑I
i=i S

(
i, f (i)

)
.

Given a spectrogram obtained from the CSI time series,
there might be an infinite number of candidate traces. How-
ever, the trace that corresponds to the real human breathing
captured through wireless propagation should have a higher
energy E(f) compared to other frequency traces. For a given
spectrum S, we define the dominant breathing rate trace f∗ as
the trace with the highest energy among all possible traces f,
i.e.,

f∗ = argmax
f

E(f). (7)

On the other hand, because the breathing rate of a human
cannot change abruptly, the estimated breathing rate trace
should be smooth and the estimated breathing rate at current
time instance should be highly dependent on the breathing
rate at the previous time stamp. In practice, because the
frequency resolution of FFT is restricted by the length of
the CSI window where FFT is performed, we can only
get discrete frequency readings on the spectrogram. Hence,
considering the nature that human breathing is continuous
and the finite frequency resolution, we adopt the Markov
chain to model the transition of subsequent breathing rate
estimations. We assume the current breathing rate estimation
only depends on the previous breathing rate estimation. The
details are as follows.

We denote the difference of human breathing rates between
adjacent time instances as δf and assume it follows the
Gaussian distribution as p(δf ) ∼ N(0, σ 2). The breathing
rate estimation obtained from the proposed algorithm in
Section VI follows the transition probability as P

(
j, j′
)
=

p(f (i) = j′|f (i − 1) = j), where P(·, ·) represents the
Markov transition probability and P

(
j, j′
)
denotes probability

of the transition from the breathing rate of j at time stamp
i − 1 to j′ at the next time stamp i. P(j, j′) can be obtained

by
∫ (j′−j+ 1

2 )∗1f

(j′−j− 1
2 )∗1f

p(δf )dδf .
As we discussed above, on one hand, the optimal breathing

rate trace should be the trace of the highest spectrum energy.
On the other hand, we add a regularization term to ensure the
continuousness and smoothness of the estimated breathing
rate trace. Finally, we propose the single breathing rate trace
identifying and tracking problem as

f∗ = argmax
f

G(f), (8)

where the objective function is defined as G(f ) = E(f) +
λ
{
log

(
π
(
f (1)

))
+
∑I

i=2 log
(
P
(
f (i − 1), f (i)

))}
, π
(
f (1)

)
represents the initial probability of the first breathing esti-
mation being f (1) which is proportional to its spectrogram
energy, and λ denotes the coefficient for regularization.

B. CROWD ESTIMATION
It worths noting that the original objective function G(f) can
be decoupled as G(f) = G(f′) + S

(
I , f (I )

)
+ log

(
P
(
f (I −

1), f (I )
))
, where f =

[
f′, f (I )

]
. In other words, given the
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current breathing rate estimation f (I ), the optimal trace f′

ahead of f (I ) can be easily obtained by maximizing
{
G(f′)+

log
(
P
(
f ′(I − 1), f (I )

))}
.

Inspired by that, we propose to utilize the dynamic pro-
gramming (DP) to solve the breathing rate trace optimization
problem defined in (8) and define the utility of the current
estimated breathing rate trace arrives at rate f (i) = j at time
instance i as

g(i, j) = S(i, j)+max
j′

{
g
(
i− 1, j′

)
+ λ log

(
P(j′, j)

)}
, (9)

By maximizing the utility function g(i, j) for every pair of
(i, j) as we traverse through all time indexes i’s and breathing
rate j’s, we break down the original optimization problem into
a sequence of optimization problems and ensure that g(i, j)
represents the maximal utility we can have if the breathing
rate trace stops at (i, j) on the spectrogram. The optimal
breathing rate trace should end at the breathing rate f ∗(I ),
f ∗(I ) = max g(I , j), j = 1, 2, · · · , J and we can obtain
the optimal breathing rate trace by performing a standard
backward search given f ∗(I ).
Each round of the aforementionedDP approach locates and

returns the strongest trace in the spectrum. We can resolve
all the breathing rate traces of a multiple-person breathing
application by performing the DP iteratively. Particularly, for
a given spectrogram of breathing signals extracted from the
CSI time series, we first calculated the utility function in (9)
for the obtained spectrogram to determine whether nobody is
in the space. When someone is inside the monitoring space,
the energy of the corresponding breathing rate trace will
be detected, i.e., g(I , j) > 0, ∃j. If one or more breathing
signals are detected, the proposed method will return the
strongest breathing rate trace with DP and clean its energy
from the spectrogram afterward. The proposed method itera-
tively performs the trace finding and nulling procedure until
no breathing rate trace energy detected. The diagram of the
proposed algorithm is plotted in FIGURE 14.

By tracking the number of distinct breathing rate traces in
the spectrogram extracted from the CSI time series, we can
infer the number of people in the environment. To further
improve the accuracy of breathing rate tracking, we utilize
the time diversity from consecutive slidingwindows to update
breathing rate traces, considering consecutive windows share
the same CSI subsequence of length W −Ws. If a breathing
rate trace from the current sliding window overlaps with the
one in the previous window, two traces belong to the same
person, and we can substitute the corresponding segment of
the previous breathing rate trace with the current one in the
current time window. If the current trace cannot merge with
any of the breathing rate traces in the previous window, a new
breathing rate trace is found indicating onemore person being
detected in the monitoring space. Hence, the number of peo-
ple in a car,M , in a particular time slot can be estimated as the
number of breathing rate traces exhibited in the spectrogram
at that time.

FIGURE 14. The diagram of the proposed iterative DP breathing rate trace
tracking algorithm.

FIGURE 15. An example of multiple breathing rate traces tracking with
the proposed iterative DP breathing rate trace tracking algorithm. Three
breathing rate traces are marked and tracked in the spectrogram (Ground
truth: 3 people in a car).

Wedemonstrate an example of breathing rate trace tracking
using the proposed iterative DP approach in FIGURE 15,
where three breathing rate traces are tracked in the spectro-
gram. The CSI time series is captured for 300 seconds under
a 30 Hz sounding rate when there are 3 people sitting in a
car. The window lengthW is set to 60 seconds and the stride
length of consecutive windows is 5 seconds. The x-axis is the
time index and the y-axis is the BPM frequency index.

C. EXPERIMENTAL RESULTS
To evaluate the performance of the proposed algorithm,
we capture the CSI time series and monitor the in-car envi-
ronment when there are up to 4 test subjects sitting in the car
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FIGURE 16. Confusion matrix of people counting using the proposed
iterative DP algorithm.

and being monitored for 300 seconds. We build the system
prototype with a pair of commercial Wi-Fi devices that per-
form the 3-by-3 MIMO transmission under a 30 Hz sounding
rate over the 5 GHz band and deploy the TX and RX in the car
under the setting in FIGURE 5. The window lengthW of each
CSI sliding window is set to 60 seconds and the stride length
of consecutive windows is 5 seconds. By performing the
proposed iterative DP algorithm as depicted in FIGURE 14 to
the captured CSI time series, the breathing rate traces of the
test subjects in the car can be obtained and thus the number
of people can be estimated.

FIGURE16 shows the confusionmatrix of people counting
using the proposed iterative DP algorithm, where the number
in the cell on the i-th row and the j-th column represents the
percentage of time that the proposed system estimates the
number of people in a car as j when the ground-truth number
is i. The estimation accuracy achieves 93.5% when only one
test subject is sitting in a car. In general, over 94.6% of the
time and for all four cases as listed in FIGURE 16, the pro-
posed wireless AI passenger counting system can estimate
the ground-truth number of people within +/− 1 number of
people error.

VIII. IN-CAR CHILD PRESENCE DETECTION WITH Wi-Fi
According to the statistics in [54], it is extremely dangerous
and can be fatal for a child if he/she was left in a closed car
without parents attendance. However, there is currently no
reliable techniques based on cameras or pressure sensors that
can detect child presence in a car, because most of the kids
are put inside a car seat on the back seat facing to the back
of the car and their weight is light. Hence, it is critical and
urgent to develop in-car monitoring systems that can detect
a child promptly when he/she is left inside a locked car even
with obstruction and thus avoid such a tragedy.

As demonstrated by the Wi-Fi based vital monitoring and
passenger counting systems discussed in the previous sec-
tions, people sitting in a car will introduce perturbations to
the in-car wireless propagation environment. On one hand,

vital signals such as breathing will bring minor but periodic
CSI patterns. On the other hand, human movements will add
irregular changes into the CSI that make the consecutive CSI
estimations at the receiver side distinct and less correlated.
Inspired by that, in this section, we propose a novel Wi-Fi-
based CPD algorithm that utilizes the information in a CSI
time series to detect the presence of a living child.

A. STATISTICAL MODELING OF CSI MEASUREMENTS
Considering a pair of TX and RX being deployed in a car
environment and equipped with omnidirectional antennas,
the TX emits a continuous EM wave via its antennas, which
is received by the RX, and the received electric field is
denoted as ERx(t, f ). We define the power response of the
corresponding CSI as g(t, f ),

g(t, f ) , |h(t, f )|2 = µ(t, f )+ ε(t, f ), (10)

where h(t, f ) denotes the measured CSI on subcarrier f at
time t , µ(t, f ) denotes the part contributed by the propaga-
tions of the EM waves, and ε(t, f ) denotes the measurement
noise which is an independent additive white Gaussian noise
for any subcarriers.

The µ(t, f ) measures the power of ERx , i.e., µ(t, f ) =
‖ERx(t, f )‖2, where ‖·‖2 denotes the Euclidean norm.Within
a sufficiently short period, the received electric fieldERx(t, f )
can be decomposed into: 1) the EEs(f ) contributed by all
the static scatterers and 2) the EEd (f ) contributed by all the
dynamic scatterers. By detecting the variations in the received
power response g(t, f ), one can also detect the occurrence of
dynamic changes happening in the environment. The details
are as follows.

As µ(t, f ) is due to the propagation of EM waves and
ε(t, f ) is due to the imperfect measurements of CSI, it can be
shown through experimental results thatµ(t, f ) and ε(t, f ) are
uncorrelated with each other. Therefore, the auto-covariance
function of g(t, f ), i.e., γg(τ, f ), can be expressed as

γg(τ, f ) , cov
(
µ(t, f )+ε(t, f ), µ(t−τ, f )+ε(t−τ, f )

)
= E2

d (f )ρµ(τ, f )+σ
2(f )δ(τ ), (11)

whereE2
d (f ) denotes the variance ofµ(t, f ), δ(·) is Dirac delta

function and ρµ(τ, f ) represents the the auto-correlation func-
tion (ACF) of µ(t, f ). An important observation is provided
in [17] based on the derivation of µ(t, f ) that when τ → 0,
ρµ(τ, f )→ 1. The corresponding ACF of g(t, f ) can thus be
expressed as [17]

ρg(τ, f ) =
E2
d (f )

E2
d (f )+ σ

2(f )
ρµ(τ, f ), (12)

where τ 6= 0. When there exists motion and τ → 0, with
the knowledge of ρµ(τ, f ) → 1, we know ρg(τ, f ) →

E2
d (f )

E2
d (f )+σ

2(f )
> 0; when there is nomotion and τ → 0, we have

ρg(τ, f ) = 0 since E2
d (f ) = 0. Therefore, limτ→0 ρg(τ, f ) is

a good indicator of the presence of motion in the car.
We will exploit this important observation in the following

design of CPD.
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B. DESIGN OF CPD ALGORITHM
1) MOTION STATISTICS
In practice, limτ→0 ρg(τ, f ) cannot be measured directly,
because τ → 0 is difficult to achieve due to finite channel
sampling rate Fs. Instead, we use the quantity ρg

(
τ = 1

Fs
, f
)

as an approximation as long as Fs is large enough. Then,
we define the motion statistic from the CSI power response
g(t, f ) as the sample ACF of g(t, f ), i.e.,

φ̂(f ) =
γ̂g

(
τ = 1

Fs
, f
)

γ̂g(τ = 0, f )
, (13)

where γ̂g(τ, f ) denotes the sample auto-covariance function
of g(t, f ) [76].When there is nomotion, according to the large
sample theory [76], the distribution of φ̂(f ) will converge
to an asymptotically normal (AN) distribution N (− 1

T ,
1
T ),

where T denotes the the number of samples. In addition, φ̂(f1)
of subcarrier f1 and φ̂(f2) of subcarrier f2 are independent and
identically distributed (i.i.d.) for ∀f1 6= f2. Hence, when there
exists motion in the measured environment, φ̂(f ) converges

to
E2
d (f )

E2
d (f )+σ

2(f )
as Fs→∞ and T →∞.

2) DETECTION RULE
Based on the previous observations, the distribution of the
proposed motion statistics can be summarized as:

No motion : φ̂(f ) ∼ N (−
1
T
,
1
T
), ∀f ∈ F ,

With Motion : φ̂(f )→
E2
d (f )

E2
d (f )+ σ

2(f )
> 0, ∀f ∈ F

(14)

We define the average of motion statistics as ψ̂ =
1
F

∑F
f=1 φ̂(f ), where F denotes the total number of available

subcarriers and φ̂(f )’s are i.i.d. for different subcarriers f .
We can then have ψ̂ ∼ N (− 1

T ,
1
FT ), that is, the variance of

ψ̂ is inversely proportional to the number of samples T and
the number of subcarriers F .

Meanwhile, since the average of motion statistic φ̂(f ) is
a positive number when there is motion in the environment,
a simple detection rule is proposed for the detection of the
presence of motion: given a preset threshold η, if ψ̂ is greater
than or equal to η, then the proposed CPD algorithm reports
a detection of motion; otherwise, no motion is detected.
Remark 1: Based on the characteristics of φ̂(f ), the prob-

ability of false alarm under a given preset threshold η can be
approximated as

PH0

(
ψ̂ > η

)
= Q

(√
FT
(
η +

1
T

))
, (15)

where Q(·) denotes the Q-function, the tail probability of the
standard normal distribution.

For the detection probability of the proposed motion detec-
tion algorithm, it is hard to characterize it theoretically since
φ̂(f ) is determined by the location of motion and the working
condition of the Wi-Fi chipsets. However, when there is no

motion, the statistical behavior of ψ̂ is only a function of F
and T , which is independent of the variance of the measure-
ment noise.

However, in practice, the motion near the car may also
trigger the detector, which causes undesirable false alarms for
the presence detection. To cope with this practical scenario,
we utilize the following key observations to improve the
performance of the proposed CPD algorithm:

1) The motion statistics caused by the motion outside the
car are usually very small, while the motion statistics
caused by the motion inside the car are much stronger;

2) The duration of the motion outside the car is usually
very short, which are mainly introduced by the pedes-
trians or cars passing by.

In the following, we propose an improvedCPD algorithm
which incorporates the above key observations.

Let ψ̂[n] denote the obtained motion statistic at the n-th
time slot, and given two preset thresholds η1 and η2, where
η1 > η2, the presence of motion is detected when ψ̂[n] > η1
or 1

W

∑W−1
i=0 ψ̂[n− i] < η2, whereW stands for the length of

the moving average window.

C. EXPERIMENTAL RESULTS
We build a real-time CPD system using a pair of commercial
Wi-Fi devices, one as TX, equipped with 2 omnidirectional
antennas, and the other as RX, equipped with 3 omnidirec-
tional antennas, and each link over a pair of antennas has a
total of 114 subcarriers.

By default, the system works on channel 161 with a carrier
frequency of 5.805GHz and a bandwidth of 40 MHz. The
sampling rate of channel measurements of the devices is set
to 30 Hz. We deploy the RX near the on-board diagnos-
tics (OBD) location, which is left of the steering wheel and
underneath the dashboard, of a typical sedan, and the TX is
placed in two different locations for evaluation:

• Setting #1: the TX is placed underneath the right-front
seat;

• Setting #2: the TX is placed above the right-rear seat.

To evaluate the performance of the proposed algorithm,
we collect CSI data for different scenarios under each of the
two settings:

• Scenario #1: one person sleeps in the car on different
seats;

• Scenario #2: one person stays in the car with small
motion, e.g., moving head, hands, and legs;

• Scenario #3: several people continuously walks around
the car within 2 meters;

• Scenario #4: the car is empty and no one is around the
car.

Scenario #1–#2 are target events that the CPD algorithm
should detect, while Scenario #3–#4 are the events that should
not be detected. For each setting, we collect the data lasting
for 25 minutes for Scenario #1–#2 and the data lasting for
15 minutes for Scenario #3–#4.
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FIGURE 17. The ROC curves for Setting #1.

FIGURE 18. The ROC curves for Setting #2.

The proposed algorithm reports a decision for every sec-
ond and the receiver operating characteristic (ROC) curves
for different parameter sets are shown in FIGURE 17 and
FIGURE 18. The x-axis is the false positive rate (FPR),
i.e., FPR = TD|N /TN , where TD|N denotes the time duration
of presence detectionwhen the car is empty and TN represents
the ground-truth duration for the empty car case (Scenario
#3 and Scenario #4). On the other hand, the y-axis is the true
positive rate (TPR), i.e., TPR = TD|P/TP, where TD|P denotes
the total time of human presence detected by the proposed
systemwhen the test subject is in the car and TP represents the
ground-truth time duration for in-car human presence under
Scenario #1 or Scenario#2. FIGURE 17a shows that although
a smaller η2 can lead to a better performance in ROC when
the false alarm rate is high, it cannot achieve the points for

small false alarm rates. Therefore, η2 = 0.6 is preferred and
used in the following comparisons.

FIGURE 17b shows that the performance is similar for
different η1 and we choose η1 = 0.6 in the following
comparisons. FIGURE 17c compares the performance for
different lengths of the moving average window. A longer
window can improve the detection performance at a cost of
a longer delay of the system. By comparing FIGURE 17 and
FIGURE 18, it can be observed that Setting #2 is better for
CPD application. This is because the distance between TX
and RX is larger and the sensing area is also larger when
compared with Setting #1.

IX. RELATED WORKS AND COMPARISONS
As we have discussed in the previous sections, a car is a spe-
cial case of indoor environments that delivers large degrees of
freedom through plentiful multipaths reflected/scattered by
the interior and the metal exterior of the car. Our experimental
results showed that the CSI obtained using a single pair of
commercial Wi-Fi devices deployed in the car can render
meaningful radio analytics. Information about in-car activ-
ities, driver state, passenger well-being, and the number of
passengers is revealed and thus it enables many cutting-edge
IoT applications for the smart car scenario. It can be antic-
ipated that with more bandwidth available in the new gen-
eration of wireless communications, one can decipher more
multipaths information, and thus achieve better performance.

Besides utilizing CSI directly for wireless sens-
ing [77]–[79], there are other radio analytic techniques in the
literature. Traditional wireless passive sensing systems are
mainly based on the received signal strength (RSS) [10], [14],
[31], [80]. However, because RSS is coarse-grained and can
be easily corrupted by multipath effect, RSS-based sensing
systems often suffer a limited accuracy in indoor activity
detection.

Another category of radio analytic techniques relies on
the ToF information embedded in the received signals
to track changes of reflected objects for motion detec-
tion or vital sign monitoring. As the spatial resolution
of the CSI is inversely proportional to the bandwidth,
in order to extract the fine-grained ToF information, the ToF-
based systems often require either extremely large band-
widths like ultrawide band (UWB) [81]–[83], or specially
designed frequency-modulated continuous-wave (FMCW)
signals [28], [84]–[87]. Those ToF-based techniques cannot
be implemented on off-the-shelf Wi-Fi device and extra cali-
bration is often requested.

Thanks to the advancements in wireless technologies and
connective devices, Wi-Fi becomes available in the car, and it
delivers enriched multipath information to support IoT appli-
cations. The presented wireless AI smart car system show
its significant potential and prominent impacts for future
smart car applications. The proposed system has no specific
requirement for devices and LOS path between the TX and
RX and is flexible in device deployment. Moreover, by fully
exploiting the magnificent multipath propagation in the car,
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the proposed system only requires a single pair of commercial
Wi-Fi chipsets and can sense detailed in-car human activity
and biological information.

With the development of 5G, millimeter wave (mmWave)
has been explored in vital signmonitoring [88]–[90] and other
human motion detection applications [91]–[94]. We have
conducted experiments for mmWave and in fact the new
technology makes sensing much easier because of the high
temporal resolution of CSI. However, the cost of mmWave
hardware may prevent them from wide deployment, while
current 5GHzWi-Fi can do the sensing tasks sufficiently well.
Compared with Wi-Fi signal, there is one more drawback
for mmWave sensing that the mmWave cannot penetrate
obstructions due to the high carrier frequency and small wave
length. Moreover, we also experimented wireless sensing
with cellular signals, however, the performance was bad due
to the hardware issue and low sampling rate. Sensing with
mmWave and 5G cellular signals are beyond the scope of this
paper.

A. EXISTING SMART CAR MONITORING SYSTEMS
Due to the proliferation of automobiles and the advancements
in technologies and engineering, there has been a surging
demand and interest in IoT applications designed for the
smart car, focusing on providing driving assistance and safety
enhancement.

Automobile driving is a demanding activity and the state
of the driver can bring a significant impact on driving perfor-
mance. Existing works target more at smart driver monitoring
systems that sense and monitor the driver’s state and changes
in the environment to provide driving assistance, address
risk factors associated with driver characteristics, and support
driver in maintaining awareness in driving [52]. Smart driver
monitoring systems leverage emerging sensor technologies
to capture measurements such as driver’s facial and body
expressions (e.g., percentage of eye closure, frequency of
eye blinks and yawning) [60], [95]–[99], driver’s interaction
with the vehicle (e.g., speed and lane deviation) [100]–[103],
and/or driver’s physiological signals (e.g., vital sign and brain
activity) [49], [50], [63]–[65], [104]–[106]. Although the
exact state of a drivermay not be directlymeasurable, systems
and algorithms have been designed to infer it from measured
data. The information of the driver’s facial and body expres-
sions are captured by video cameras or infra-red (IR) cameras
which requires a LOS path between the driver and the sensor.
Traditional approaches to capture physiological signals of a
driver require one to wear sensors during driving. In order
to capture one’s brain signal, the driver has to put on the
EEG sensor over the head. On the other hand, to monitor
the driver’s vital signs, one is required to either wear ECG
sensors or a respiration belt. However, while they are sensing
and monitoring driver’s state, contact sensors like EEG, ECG
and respiration belt can also bring distraction to the driving
activity.

Recently, with the development of connective devices,
automobile manufacturers have installed Wi-Fi chipsets

and/or Bluetooth into the car. Leveraging the CSI of in-car
wireless propagation, Raja et al. proposed a Wi-Fi based
driver distraction system that infer changes fromCSI and then
detect unusual head turns and armmovements [66]. However,
in that system, the distraction detection was achieved by
detecting head and arm movements, both of which often
happen during normal driving and may not serve as a reliable
feature to evaluate the driver’s state.

Compared with the aforementioned methods, the proposed
wireless AI smart car system is infrastructure free and non-
intrusive, because it relies on the information of multipath
propagation between a single pair of commercial Wi-Fi
devices without use of cameras or physiological sensors.
In addition, as most of the current systems focus only on
driver state monitoring, the proposed system in this arti-
cle succeeds in accomplishing multiple different smart car
IoT applications simultaneously, including driver recogni-
tion, driver state monitoring, passenger counting, and left
child detection in unattended vehicles.

The in-car driver authentication and in-car child pres-
ence detection (CPD) are for static cars. For the applica-
tion of in-car driver authentication, the use case scenario
is to identify authorized drivers and then allow the con-
firmed/recognized driver to start the car. The CPD is designed
to detect the presence of a child left in a car after the adult left
the car. Hence, when the CPD monitoring is running, the car
is most likely to be static. The proposed vital sign monitoring
method may not work well when detecting multiple person
breathing in a moving car since the breathing detection highly
depends on the detection of periodic signals in the CSI time
series. However, once the car is static, e.g., waiting before the
traffic light, the proposed system can capture the breathing
signals and count people.

In addition, the proposed system is immune to outside
dynamics and wireless interference. Since the car can be
viewed as a closed metal box, most of the multipaths will
only propagate in the car and the CSI captured at the Wi-Fi
devices will not contain outside information. We conducted
experiments in [67] and the results showed that dynamics
outside a car, e.g., other cars moving outside the test vehicle,
will not affect the in-car sensing. Moreover, even if nearby
cars also equip with the proposed Wi-Fi sensing systems,
there will not be wireless interference because according to
the IEEE802.11 standard, signals transmission on the same
Wi-Fi channel follow the collision avoidance protocol.

In the following, we will summarize and compare in detail
the existing approaches on smart car monitoring and radio
analytics in human recognition, vital signmonitoring, passen-
ger counting, presence detection, and wireless indoor surveil-
lance.

B. HUMAN RECOGNITION
Human identification can either be done using biometric-based
features like the fingerprint, iris, voice, face and etc., or by
using non-biometric based features like hand signature, secu-
rity keys or passwords. Biometric-based approaches have
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an inherent advantage over others as they are unique to an
individual and cannot be easily forged or forgotten. Although
these works can successfully perform human authentication,
privacy is compromised. On the other hand, wireless sensing
based approaches provide security and privacy at the same
time.

Recently, wireless sensing based human identification is
receiving an increasing attention. Gait recognition is done
by exploiting the variations in CSI patterns and CSI spectro-
grams [30], [107], [108]. Obtaining gait is not feasible in the
proposed smart car system. One of the first work to perform
human identification based on wireless sensing used radio
biometrics as a feature. Radio biometrics refers to the CSI
perturbations as radio signals get reflected and scattered by
a human body [44]. This work used time reversal resonat-
ing strength (TRRS) to compare different radio biometrics
embedded and recorded in the CSI with the assumption that
the indoor environment does not change during the period of
the experiment. But this assumption is in general false, as can
be seen from the change of the in-car environment with time
in FIGURE 4.

The NN and SVM techniques were explored for the pro-
posed in-car driver authentication, whose use case is to iden-
tify an authorized driver before a car is authorized to start.
Hence, given that the environment in a static car should
have little vibrations and few interference sources, the current
model structure is sufficient for the job. We will explore more
complex model structure when we have more data samples
and/or different format of samples, e.g., a recurrent neural
network (RNN) for a time series of CSI that contains radio
biometric information. However, that is out of the scope of
this paper.

C. VITAL SIGN MONITORING
Breathing rate is an important vital sign to monitor human
health. Current solutions for breathing monitoring are usually
invasive. Wireless sensing techniques capture and record the
human breathing signal with EM waves through wireless
propagation, and thus supports a contact-free breathing mon-
itoring solution. The existing schemes can be classified into
those based on radar [85] and Wi-Fi [39]–[41].

The Universal Software Radio Peripheral (USRP) is uti-
lized in [85] as a radar to detect the frequency shift caused
by periodic variations of EM waves due to human breath,
however, such specialized hardware is highly costly and
cannot be widely used. UbiBreath proposed in [39] lever-
ages the RSS of commercial Wi-Fi to extract hidden peri-
odic breathing signal. However, UbiBreath can only detect
the breathing signal accurately when the device is close
to people’s chest. In [40], the fine-grained CSI is used to
estimate breathing signal, but the proposed scheme cannot
work without knowing the number of people in the coverage
area. TR-BREATH in [41] projects CSI into the TRRS and
estimates the breathing rate by Root-MUSIC and affinity
propagation algorithm. Although TR-BREATH can achieve

a high accuracy, the computational cost is high due to the
computational complexity of Root-MUSIC.

Compared with the aforementioned method, the proposed
method provides a low-computation cost scheme to estimate
the breathing rate by utilizing the off-the-shelf Wi-Fi device.
Based on the BPM spectrum obtained by combining the spec-
trum of CSI on selected links and subcarriers, the proposed
scheme is capable of concurrently estimating the breathing
rate of multiple people.

The vital sign monitoring can work even when the engine
of the car is running but the car is not moving. The detec-
tion of vital signs relies on detecting and extracting periodic
signals from the time series of captured CSI. As long as
the car is static for a while, e.g., stops before a traffic light,
the vital signs can be monitored using the proposed method
and background noise/interference subtraction for vital signs
monitoring in a running is our future work.

D. PEOPLE COUNTING
Estimating the number of people in a certain area, which
is also denoted as crowd counting, is important for many
applications. For instance, a smart home can automatically
adjust the light and air conditioner based on the num-
ber of people. Traditional crowd counting schemes can
be classified into two categories: vision-based [109] and
RF based [110]–[113].

The performance of the vision-based scheme depends on
the setting environment and would degrade severely when the
camera is blocked by other objects. Besides, the privacy issue
hinders the development of such technology. Radio analytic
techniques successfully avoids these problems. Considering
the ubiquitous RF devices, there has been considerable inter-
est in RF-based crowd counting. RF-based crowd estimation
can be categorized into device-based and device-free meth-
ods. As for device-based scheme [110], the system requires
users to hold a device, limiting its applicability.

There have been a few works leveraging off-the-shelf
Wi-Fi device to do crowd counting [111]–[113]. However,
all of these systems are designed based on the assumption
that people keep walking in the observation area, which is
impractical for the smart car scenario. In our system, we focus
on an RF-based device-free method to estimate the number
of passengers in the car, which does not require any spe-
cific user operations. By identifying and tracking the breath-
ing signal captured by Wi-Fi signals, the proposed iterative
DP can estimate the number of passengers in the car with a
good accuracy.

E. CHILD PRESENCE DETECTION
The most prevailing solutions nowadays for CPD are either
based on contact sensors, e.g., seat pressure sensor, or based
on camera [114] to detect the presence of child in the car.
However, both of these two approaches have their own draw-
backs. For contact sensor-based approaches, the weight of
an infant may be too light to trigger the detection of a seat
pressure sensor; for camera-based approaches, the child can
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be in the blind zone, e.g., under the rear seats, due to the
blockage of the front seats.

Recently, it has been shown in [115] that mmWave sensors
can be used to detect the occupancy of each seat in a car,
but it requires dedicated hardware and sophisticated signal
processing, which limits its deployment in practice. The fea-
sibility of the human motion detection using Wi-Fi devices,
which are equipped in many car models, has been proved
in [116]–[119]. To the best of our knowledge, we are the first
to investigate the use of commercialWi-Fi devices in the CPD
application.

X. CONCLUSION
Recent developments in wireless technologies and advance-
ments in radio analytics empowers many cutting-edge
IoT applications that will dramatically change our lifestyle
and assist people in understanding the who, what, when,
where, and how of things happening around. Specifically,
by leveraging the large degrees of freedom delivered via
multipath propagation, one can retrieve the environmental
information implanted in the CSI and thus perceive the sur-
roundingworld.With larger bandwidth becoming available in
the next generation communications, richer information can
be revealed by the means of wireless sensing.

As the number of automobiles is proliferating and vehicles
are becoming increasingly automated, it is important for the
vehicle to be intelligent and provide driving assistance and
safety guarantee. The inside of a car can be viewed as a
special case of rich scattering indoor environments, where
multipath propagation interacts with the driver and the pas-
sengers, meanwhile, recording their characteristics. Inspired
by the techniques of radio analytics, we proposed the concept
of wireless AI for smart cars, introducing smart IoT applica-
tions to the car. With the help of a pair of commercial Wi-Fi
devices deployed in the car, the proposed wireless AI system
can automatically identify the driver, monitor the driver’s
state, count number of people sitting in the car, and detect
the presence of the unattended/left child. Unlike traditional
approaches for smart car monitoring, the proposed wireless
AI approach utilizes non-intrusive sensing, enjoys low com-
plexity, works well under NLOS, and supports multiple IoT
applications simultaneously, thusmaking it an ideal paradigm
for the future smart car monitoring.
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